Энергия электрического поля. Электрическая энергия системы зарядов. Энергия уединенного проводника. Энергия конденсатора. Плотность энергии. Энергия заряженного проводника и конденсатора. Объемная плотность энергии электрического поля Энергия поляризованн

Энергия заряженного проводника определяется как работа по переносу заряда из на его поверхность. Если сразу переносить весь заряд из на поверхность проводника, то работа, совершаемая против силы электрического поля будет равна нулю, поскольку заряды переносятся в отсутствии электрического поля.

Поэтому энергию заряженного проводника следует определять как работу по переносу заряда из на его поверхность отдельными малыми порциями.

Энергия заряженного конденсатора. Энергию заряженного конденсатора можно найти так же через работу по переносу заряда на его пластины отдельными малыми порциями. Основное отличие от предыдущего случая состоит в том, что в данном случае заряды переносятся не из , а с одной пластины на другую, что требует во много раз меньших затрат энергии.Поскольку работа по зарядке проводника или конденсатора связана с потенциалом, то потребуются гораздо меньшие затраты энергии для сообщения одинакового заряда пластинам конденсатора и проводнику. Отсюда следует, что взаимная емкость пластин конденсатора много больше суммарной емкости каждой из пластин в отдельности.

ЭНЕРГИЯ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ. ПЛОТНОСТЬ ЭНЕРГИИ

Будем считать, что энергия заряженного конденсатора – это энергия электростатического поля, заключенного между его пластинами. Для определения энергия электростатического поля возьмем плоский конденсатор, поскольку поле между его пластинами является однородным. Выразим энергию заряженного конденсатора через основную характеристику электрического поля - напряженность поля

Работа по поляризации диэлектрика. Возьмем диэлектрик в виде куба, который состоит из неполярных молекул. Под действием поля напряженностью Е происходит смещение + и – зарядов в каждой молекуле на dr k .

Возникающий при этом электрический момент молекулы p k = q k ∙dr k .

Работа по поляризации одной молекулы: dA k =F k ∙ dr k = q k ∙E∙ dr k ,

но q k ∙dr k =dp k -это изменение электрического момента одной молекулы.

Откуда dA k =Е∙ dр k

Элементарная работа по всему объему диэлектрика:

dA V = Ʃ E∙dp i = E Ʃ dp i = E d Ʃp i = E∙ dP

Работа по поляризации диэлектрика

Энергия электрического поля, плотность энергии

Первое слагаемое – это энергия электрического поля

в вакууме, а второе – работа по поляризации диэлектрика

ЭЛЕКТРИЧЕСКИЙ ТОК

Лекция №14

Электрическим током называется направленное движение зарядов. За направление тока принимается направление движения + зарядов. Свойство тел пропускать электрический ток называется проводимостью . По этому признаку все тела можно условно разделить на проводники и изоляторы .

Линия тока – это линия, вдоль которой движутся заряды, участвующие в электрическом токе.

Трубка тока – трубка, боковые стенки которой образованы линиями тока.

Сила тока I – физическая величина, характеризующая скорость потока заряженных частиц, равная количеству электричества Δq, проходящему через поперечное сечение проводника за время Δt, отнесенному к этому интервалу времени: I= Dq/Dt

Плотность тока – векторная величина, связывающая силу тока с поперечным сечением проводника. Плотность тока равна количеству электричества Δq, проходящему через поперечное сечение проводника Δ S за время Δt, отнесенное к этой площадке и этому интервалу времени.

1. Энергия системы неподвижных точечных заря-до в. Электростатические силы взаимодействия консервативны, следователь­но, система зарядов обладает потенциальной энергией. Найдем потенциальную энергию системы двух неподвижных точечных зарядов Q 1 и Q 2 , находящихся на расстоянии г друг от друга. Каждый из этих зарядов в поле другого обладает потенциальной энергией:

где и - соответственно потенциалы, создаваемые зарядом Q 2 в точке на­хождения заряда Q 1 и зарядом Q 1 в точке нахождения заряда Q 2

и

Поэтому W 1 =W 2 =W и W=Q 1 =Q 2 =1/2(Q 1 + Q 2 ). Добавляя к системе из двух зарядов последовательно заряды Q 3 , Q 4 ..., можно убедиться в
том, что в случае n неподвижных зарядов энергия взаимодействия системы то­чечных зарядив равна

Потенциал, создаваемый в той точке, где находится заряд Q i , всеми зарядами, кроме i-го.

2 Энергия заряженного уединенного проводника. Пусть имеется уединенный проводник, заряд, емкость и потенциал которого соответственно равны Q, С, . Увеличим заряд этого проводника на dQ. Для этого необходимо перенести заряд dQ из бесконечности на уединенный про­водник, затратив на это работу равную

Чтобы зарядить тело от нулевого потенциала до , необходимо совершить работу

, (1.17.2)

Энергия заряженного проводника равна той работе, которую необходимо совершить, чтобы зарядить этот проводник.

(1.17.3)

Формулу (1.17.2) можно получить и из того, что потенциал проводника во всех его точках одинаков, гак как поверхность проводника является эквипотен­циальной. Полагая потенциал проводника равным , из (1.17.1) найдем

где Q = , - заряд проводника.

3. Энергия заряженного конденсатора. Как всякий заряженный проводник, конденсатор обладает энергией, которая в соответствии с формулой (1.17.3) равна

, (1.17.4)

где Q - заряд конденсатора, С - его емкость, ()- разность потенциалов моыц обкладками.

4. Энергия электростатического поля. Преобразуем формулу (1.17.4), выражающую энергию плоского конденсатора посредством зарядов и потенциалов, воспользовавшись выражением для емкости плоского конденсатора () и разности потенциалов между его обкладками . Тогда получим

(1.17.5)

где V = Sd - объем конденсатора. Формула (1.17.5) показывает, что энергия конденсатора выражается через величину, характеризующую электростатическое поле, - напряженность Е.

Объемная плотность энергии электростатического поля (энергия единицы объема)

(1.17.6)

Выражение (1.46) справедливо только для изотропного д и э л с к i р и к а, для которого выполняется соотношение:

Формулы (1.17.4) и (1.17.5) соответственно связывают энергию конденсату,> с зарядом на его обкладках и напряженностью поля. Возникает, естественно, вопрос о локализации электростатической энергии и что является ее носителем- заряды или поле? Ответ на этот вопрос может дать только опыт. Электроста­тика изучает постоянные во времени поля неподвижных зарядов, т.е. в ней поля и обусловившие их заряды неотделимы друг от друга. Поэтому электростатика ответить на поставленные вопросы не может. Дальнейшее развитие теории и эксперимента показало, что переменные во времени электрические и магнитные поля могут существовать обособленно, независимо от возбудивших их за­
рядов, и распространяются в пространстве в виде электромагнитных волн, спо­собных переносить энергию. Это убедительно подтверждает основное положе­ние теории близкодействия о локализации энергии в поле и то, что поле является ее носителем.

  • 1.1.7. Теорема гаусса в интегральной форме и ее применение к расчету электрических полей
  • 1.1.8. Теорема гаусса в дифференциальной форме. Дивергенция векторного поля
  • 1.1.9.Потенциальный характер электростатического поля. Работа сил поля при перемещении зарядов. Циркуляция и ротор векторного поля. Теорема стокса в интегральной и дифференциальной форме
  • 1.1.10.Потенциал электростатического поля. Потенциальная энергия заряда в электростатическом поле
  • 1.1.11. Связь между напряженностью и потенциалом
  • 1.1.12. Уравнение пуассона и лапласа для потенциала
  • 1.1.13. Эквипотенциальные поверхности
  • Лекция 2
  • 1.2. Диэлектрики в электрическом поле
  • 1.2.1.Полярные и неполярные молекулы
  • 1.2.2. Диполь во внешнем электрическом поле
  • 1.2.3 Поляризация диэлектриков. Ориентационный и деформационный механизмы поляризации. Дипольный момент системы зарядов. Диэлектрическая восприимчивость для полярных и неполярных диэлектриков
  • 1.2.5. Вектор электрического смещения (электростатической индукции). Диэлектрическая проницаемость диэлектриков
  • 1.2.6. Граничные условия для векторов напряженности электрического поля и электрического смещения
  • 1.2.7. Примеры расчета электрических полей в диэлектриках
  • 1.2.8. Силы, действующие на заряд в диэлектрике
  • 1.3.Проводники в электрическом поле
  • 1.3.1. Равновесие зарядов на приводнике. Основная задача электростатики проводников. Эквипотенциальные поверхности и силовые линии электростатического поля между проводниками
  • 1.3.2.Проводник во внешнем электрическом поле. Электростатическая защита
  • 1.3.3.Электроемкость проводников
  • 1.3.4. Электроемкость конденсаторов
  • 1.3.5. Соединения конденсаторов
  • 1.4.Энергия электрического поля
  • 1.4.1.Энергия взаимодействия электрических зарядов. Теорема ирншоу
  • 1.4.2. Энергия заряженного проводника
  • 1.4.3. Энергия заряженного конденсатора. Объемная плотность энергии электростатического поля
  • 1.4.4.Энергия поляризованного диэлектрика. Объемная плотность энергии электрического поля в диэлектрике
  • 1.4.5. Энергия системы заряженных проводников
  • 1.4.6. Закон сохранения энергии для электрического поля в несегнетоэлектрической среде
  • 1.4.2. Энергия заряженного проводника

    Заряжая некоторый проводник, необходимо совершить определенную работу против кулоновских сил отталкивания между одноименными электрическими зарядами. Эта работа идет на увеличение электрической энергии заряженного проводника, которая в данном случае аналогична потенциальной энергии в механике.

    Рассмотрим проводник, имеющий электроемкость , заряди потенциал. Работа, совершаемая против сил электростатического поля при перенесении заряда
    из бесконечности на проводник равна

    .

    Для того, чтобы зарядить тело от нулевого потенциала до потенциала , необходимо совершить работу
    . Ясно, что энергия заряженного тела равна той работе, которую нужно совершить, чтобы зарядить это тело:
    .

    Энергию называют собственной энергией заряженного тела. Ясно, что собственная энергия есть не что иное, как энергия электростатического поля этого тела.

    1.4.3. Энергия заряженного конденсатора. Объемная плотность энергии электростатического поля

    Пусть потенциал обкладки конденсатора, на которой находится заряд
    , равен, а потенциал обкладки, на которой находится заряд
    ,. Энергия такой системы зарядов, то есть равна собственной энергии системы зарядов, где- напряжение между обкладками конденсатора,
    .

    Рассмотрим плоский конденсатор. Энергия, заключенная в единице объема электростатического поля называется объемной плоскостью энергии. Эта объемная плоскость должна быть одинаковой во всех точках однородного поля, а полная энергия поля пропорциональна его объему. Известно, что
    ,
    , тогда для энергии имеем:
    , но
    - объем электростатического поля между обкладками конденсатора, то есть
    . Тогда объемная плотность энергииоднородного электростатического поля конденсатора равна
    , и определяется его напряженностью или смещением. В случае неоднородных электрических полей

    Найдем энергию сферического конденсатора. На расстоянии от центра заряженного шара напряженность его электростатического поля равна
    . Рассмотрим бесконечно тонкий шаровой слой, заключенный между сферами радиусови
    . Объем такого слоя:
    . Энергия слоя
    следовательно,

    .

    Тогда полная энергия заряженного шара равна:

    ,

    где - радиус шара. Емкость шара
    , следовательно,
    - энергия электростатического поля сферического конденсатора равна его собственной энергии, так как заряженное тело потому и обладает электрической энергией, что при его зарядке была совершена работа против сил создаваемого им электростатического поля.

    1.4.4.Энергия поляризованного диэлектрика. Объемная плотность энергии электрического поля в диэлектрике

    Рассмотрим однородный изотропный диэлектрик, находящийся во внешнем электрическом поле. Процесс поляризации связан с работой по деформации электронных орбит в атомах и молекулах и по повороту осей молекул-диполей вдоль поля. Ясно, что поляризованный диэлектрик должен обладать запасом электрической энергии.

    Если поле напряженностью создано в вакууме,
    , то объемная плотность энергии этого поля в точке с напряженностьюравна:

    Докажем, что объемная плотность энергии поляризованного диэлектрика в этой точке выражается формулой:
    .

    Рассмотрим диэлектрик с неполярными молекулами. Молекулы такого диэлектрика являются упругими диполями. Электрический момент упругого диполя, находящегося в поле с напряженностью , равен
    , где- поляризуемость диполя, или в скалярной форме:

    , (1.4.1)

    где
    - заряд и плечо диполя.

    На заряд со стороны поля действует сила
    , которая при увеличении длины диполя на
    совершает работу
    . Из выражения (1.4.1) получаем:
    , поэтому

    . (1.4.2)

    Чтобы найти работу поля при деформации одного упругого диполя, надо проинтегрировать выражение (1.4.2):

    .

    Работа равна той потенциальной энергии, которой обладает упругий диполь в электрическом поле напряженностью. Пусть- число диполей в единице объема диэлектрика. Тогда потенциальная энергия всех этих диполей, то есть объемная плотность энергии поляризованного диэлектрика равна:
    . Однако
    - модуль вектора поляризации, тогда
    . Известно, что
    , и
    , тогда
    , что и требовалось доказать.

    Согласно определению потенциала (12.17), энергию взаимодействия системы п неподвижных точечных зарядов (/ = 1 ,п) можно определить

    где ф, - потенциал, создаваемый в той точке, где находится заряд, всеми зарядами, кроме /-го. Если заряд распределен в пространстве непрерывно с объемной плотностью р = р(г), то элемент объема dV будет иметь заряд dq - pdV. Тогда энергия системы определяется уравнением

    |

    где V - весь объем, занимаемый зарядом.

    Определим энергию заряженного уединенного проводника произвольной формы, заряд, емкость и потенциал которого равны соответственно q, С, ф. Потенциал во всех точках уединенного проводника одинаков. Зная ф, найдем его энергию как

    или, используя С = q/q> (формула (12.40)), найдем

    Можно доказать, что электрическая энергия системы из п неподвижных заряженных проводников

    где OjdS, поскольку в проводнике избыточные заряды распределе-

    ны по его внешней поверхности, о, - поверхностная плотность сторонних зарядов на малом элементе поверхности /-го проводника площадью dS. Интегрирование проводится по всей эквипотенциальной внешней поверхности проводника площадью 5). Таким образом, формулу (13.26в) перепишем в виде

    где Sj - поверхность заряженных проводников.

    В общем случае электрическую энергию любой системы заряженных неподвижных тел - проводников и непроводников - можно найти по формуле

    где ф - потенциал результирующего поля всех сторонних и связанных зарядов в точках малых элементов dS и dV заряженных поверхностей и объемов; аир- соответственно поверхностная и объемная плотности сторонних зарядов. Интегрирование проводится по всем заряженным поверхностям S и по всему заряженному объему Стел системы.

    Согласно формуле (13.28), если заряд распределен непрерывно, то необходимо разбить заряд каждого тела на бесконечно малые элементы odS или рdV и каждый из них умножить на потенциал ф, создаваемый не только зарядами других объектов, но и элементами заряда этого тела.

    Расчет по формуле (13.28) позволяет вычислить полную энергию взаимодействия, поскольку получаем величину, равную сумме энергий взаимодействия заряженных неподвижных тел и их собственных энергий.

    Собственная энергия заряженного тела - это энергия взаимодействия друг с другом элементов данного заряженного тела.

    Энергию W можно трактовать как потенциальную энергию системы заряженных тел, обусловленную кулоновскими силами их взаимодействия. Влияние среды на энергию системы при неизменном распределении сторонних зарядов таково, что значения потенциалов ф в разных диэлектриках различны. Например, в однородном, изотропном диэлектрике, заполняющем все поле, ф меньше, чем в вакууме, в? раз.

    Из формулы (13.28) можно получить также формулу для электрической энергии конденсатора (р = 0):

    где -S") и xSj - площади обкладок конденсатора; q = CU .

    Изучение переменных электромагнитных полей (тема 20) показало, что они могут существовать отдельно от породивших их систем электрических зарядов и токов, а их распространение в пространстве в виде электромагнитных волн связано с переносом энергии. Так, было доказано, что электромагнитное поле обладает энергией. Соответственно и электростатическое поле обладает энергией, которая распределена в поле с объемной плотностью w e .

    Объемная плотность энергии электростатического поля w e в случае однородных полей вычисляется по формуле

    Для неоднородных полей справедливо выражение

    где dW - энергия малого элемента dV объема поля, в пределах которого величину объемной плотности электростатического поля w e можно считать всюду одинаковой.

    Единица объемной плотности энергии электрического поля в СИ - джоуль на метр в кубе (Дж/м 3).

    Объемная плотность энергии электростатического поля в изотропной диэлектрической среде (или вакууме)

    где D - электрическое смешение. Согласно уравнению (13.12а), D = ce 0 E .

    Необходимо отметить, что формулы (13.25) - (13.28а) справедливы для потенциальных электростатических полей, т.е. полей неподвижных заряженных тел.

    Для переменных непотенциальных электрических полей понятие потенциала и построенные на его основе выражения для энергии лишены смысла. Эти поля обладают энергией, которую можно найти, пользуясь универсальной формулой, справедливой как для однородного, так и для неоднородного поля:

    где V - объем, занимаемый полем.

    Энергия поляризованного диэлектрика. Как следует из формулы (13.31), объемная плотность энергии электростатического поля в вакууме

    При той же напряженности Е поля в диэлектрической среде объемная плотность энергии поля в г раз больше, чем в вакууме:

    Поэтому объемная плотность энергии и> диэл поляризованного диэлектрика определяется как

    где Р = х? о^ - поляризованность диэлектрика; х - диэлектрическая восприимчивость диэлектрика.

    Пондеромоторные силы. Пондеромоторные силы - это механические силы, которые действуют на заряженные тела, помещенные в электрическое поле. Под действием данных сил поляризованный диэлектрик деформируется - это явление называется электрострикцией. Причиной возникновения пондеромоторных сил является действие неоднородного электрического поля на дипольные молекулы поляризованного диэлектрика. Эти силы обусловлены неоднородностью макрополя, а также микрополя, создаваемого в основном ближайшими молекулами поляризованного диэлектрика.

    Рассмотрим, например, заряженный плоский конденсатор (см. рис. 12.18), отключенный от источника (постоянные заряды на обкладках). Введем в него диэлектрик с диэлектрической проницаемостью z таким образом, чтобы между ним и пластинами конденсатора не было даже тонкого зазора (иначе силы электрострикции не передавались бы пластинам и сила взаимодействия между пластинами не менялась бы при введении диэлектрика). Под действием пондеромоторной силы обкладки конденсатора сжимают пластину диэлектрика, помещенного между ними, и в диэлектрике возникает давление.

    Если расстояние между пластинами уменьшается на dx, то механическая работа

    где F x - проекция силы притяжения F между пластинами конденсатора на положительное положение осиХ. Изменение энергии поля

    где S - площадь поверхности обкладки конденсатора.

    Согласно закону сохранения энергии, механическая работа сил электрического поля равна уменьшению его энергии. Тогда пондеромоторная сила (сила, действующая на единицу поверхности пластины)

    т.е. будет равна объемной плотности энергии электрического поля.

    Энергия заряженного уединенного проводника

    Если заряды распределены в теле непрерывно, то суммирование заменяем на интегрирование. Если учесть, что для проводника j = const и использовать выражение для емкости проводника С=q/j, можно получить различные выражения для энергии проводника.

    Энергия заряженного конденсатора

    Рассмотрим две параллельные одинаковые незаряженные пластины, Мысленно перенесем с одной пластины на другую бесконечно малый заряд +dq. Для этого не требуется никакой работы, т.к. пластина пока не заряжена. После этого пластины окажутся разноименно заряженными, и между ними появится разность потенциалов Dj. Для переноса следующей «порции» заряда уже требуется работа. Элементарная работа внешних сил по перенесению малого заряда dq с обкладки 2 конденсатора на обкладку 1:

    Работа, которую надо затратить, чтобы зарядить конденсатор зарядом q, получается путем интегрирования.

    Работа внешних сил при увеличении заряда конденсатора от 0 до q

    Так как А=DW, то энергия заряженного конденсатора

    Энергия электростатического поля

    Получим формулы для энергии, выразив ее через характеристики электрического поля, существующего вокруг заряженных тел: напряженность Е и электрическую индукцию D. Рассмотрим плоский конденсатор, считая поле между обкладками однородным. Энергия заряженного конденсатора

    подставим в эту формулу выражение для емкости плоского конденсатора, получим

    Обобщим полученные результаты на случай неоднородного поля. Введем понятие объемной плотности энергии. Объемная плотность энергии - это энергия, приходящаяся на единицу объема пространства

    Объемная плотность энергии электростатического поля плоского конденсатора w

    где D = e0eE – электрическое смещение.

    Запас энергии в элементарном объеме dV, т.е. в таком малом объеме, в пределах которого Е=const

    Энергия электрического поля заряженного плоского конденсатора

    Взаимная энергия системы точечных зарядов.

    Потенциальную энергию взаимодействия двух точечных зарядов q1 и q2, находящихся в вакууме на расстоянии r12 друг от друга можно вычислить по:

    Рассмотрим систему, состоящую из N точечных зарядов: q1, q2,..., qn.

    Энергия взаимодействия такой системы равна сумме энергий взаимодействия зарядов взятых попарно:

    (2)

    В формуле 2 суммирование производится по индексам i и k (i№k). Оба индекса пробегают, независимо друг от друга, значения от 0 до N. Слагаемые, для которых значение индекса i совпадает со значением индекса k не учитываются. Коэффициент 1/2 поставлен потому, что при суммировании потенциальная энергия каждой пары зарядов учитывается дважды. Формулу (2) можно представить в виде:

    где ji - потенциал в точке нахождения i-го заряда, создаваемый всеми остальными зарядами:

    Энергия взаимодействия системы точечных зарядов, вычисляемая по формуле (3), может быть как положительной, так и отрицательной. Например она отрицательная для двух точечных зарядов противоположного знака.

    Формула (3) определяет не полную электростатическую энергию системы точечных зарядов, а только их взаимную потенциальную энергию. Каждый заряд qi, взятый в отдельности обладает электрической энергией. Она называется собственной энергией заряда и представляет собой энергию взаимного отталкивания бесконечно малых частей, на которые его можно мысленно разбить. Эта энергия не учитывается в формуле (3). Учитывается только работа затрачиваемая на сближение зарядов qi, но не на их образование.

    Полная электростатическая энергия системы точечных зарядов учитывает также работу, на образование зарядов qiиз бесконечно малых порций электричества, переносимых из бесконечности. Полная электростатическая энергия системы зарядов всегда положительная. Это легко показать на примере заряженного проводника. Рассматривая заряженный проводник как систему точечных зарядов и учитывая одинаковое значение потенциала в любой точке проводника, из формулы (3) получим.