Коэффициент детерминации и эмпирическое корреляционное отношение. Дисперсия альтернативного признака

Эмпирическое корреляционное отношение

Для измерения тесноты связи применяется несколько показателей. При парной связи теснота связи определяется, прежде всего, корреляционным отношением, которое обозначается η. Квадрат корреляционного отношения – это отношение межгрупповой дисперсии результативного признака, которая выражает влияние различий группировочного факторного признака на среднюю величину результативного признака, к общей дисперсии результативного признака, выражающей влияние на него всех причин и условий. Квадрат корреляционного отношения называется коэффициентом детерминации.

ыми явлениями и их признаками: ­­­­­­­­­­­­­________________ или жестко детермини

где k- число групп

N – число наблюдений

y i – исходные значения результативного признака

y j – средние значения результативного признака для данной группы

y – среднее значение признака

f j – численность группы

Указанная выше формула применяется при расчете показателя тесноты связи по аналитической группировке. При вычислении корреляционного отношения по уровню связи применяется формула:

Сумма квадратов в числителе ­– это объясненная связью с фактором х (факторами) дисперсия результативного признака у. Она вычисляется по индивидуальным данным, полученным для каждой единицы совокупности на основе уравнения регрессии.

Если уравнение выбрано неверно или сделана ошибка при расчете его параметров, то сумма квадратов в числителе может оказаться больше чем в знаменателе, и отношение утратит тот смысл, который должно иметь. Чтобы избежать ошибочного результата, лучше вычислять корреляционное отношение по следующей формуле:

В основе указанной формулы лежит известное правило разложения сумм квадратов отклонений при группировке совокупности:

D общ = D межгр +D внутригр

Согласно этому правилу можно вместо межгрупповой (факторной) дисперсии использовать разность:

D общ –D внутригр

что дает:

При расчете η не по группировке, а по уравнению корреляционной связи (уравнению регрессии) мы используем формулу. В этом случае правило разложения суммы квадратов отклонений результативного признака записывается как

D общ = D кор +D ост

Важнейшее положение, которое следует теперь усвоить любому, желающему правильно применять метод корреляционно-регрессионого анализа, состоит в интерпретации формул (1.2) и (1.3). Это положение гласит:

Уравнение корреляционной связи измеряет зависимость между вариацией результативного признака и вариацией факторного признака (признаков). Меры тесноты связи измеряют долю вариации результативного признака, которая связанна с вариацией факторного признака (признаков).

| следующая лекция ==>

Корреляционный анализ предполагает измерение тесноты связи с помощью коэффициента корреляции и корреляционного отношения. При линейной форме зависимости силу связи оценивает коэффициент корреляции Пирсона :

Коэффициент корреляции изменяется в пределах от (– 1) до (+ 1), (– 1 r 1).

Отрицательный знак показателя свидетельствует об обратной связи, положительный – о прямой связи. Чем ближе значение показателя к единице, по модулю, тем связь сильнее, чем ближе к нулю, тем связь слабее.

Для измерения силы связи при любой форме зависимости, как линейной, так и нелинейной, а также для оценки множественной связи применяют теоретическое корреляционное отношение (индекс корреляции). В основе его расчета лежит правило сложения дисперсии:

где общая дисперсия – отражает вариацию результативного признака за счет всех действующих на него факторов;

или

факторная дисперсия , отражает вариацию результативного признака за счет фактора (х) .

остаточная дисперсия , отражает вариацию результативного признака за счет всех факторов, кроме фактора (х) ;

Теоретическое корреляционное отношение – это корень квадратный из отношения факторной дисперсии к общей дисперсии:

Подкоренное выражение – коэффициент детерминации :

показывает долю вариации результативного признака, обусловленную влиянием факторного признака, в общей вариации. Чем эта доля выше, тем связь между признаками сильнее.

Теоретическое корреляционное отношение изменяется от 0 до 1 (0 R 1) .Чем значение показателя ближе к единице, тем связь сильнее.

Для оценки тесноты связи можно воспользоваться шкалой Чеддока :

Основная тенденция развития и методы ее выявления

Каждый ряд динамики имеет свою тенденцию развития, т.е. общее направление к росту, снижению или стабилизации уровня явления с течением времени. Степень выраженности этой тенденции зависит от влияния постоянных, периодических (сезонных) и случайных факторов на уровни ряда динамики. Поэтому следует говорить не просто о тенденции развития, а об основной тенденции.

Основной тенденцией развития (трендом) называется плавное и устойчивое изменение уровня явления во времени, свободное от периодических и случайных колебаний .

Для выявления тренда ряды динамики подвергаются обработке методами укрупнения интервалов, скользящей средней, аналитического выравнивания.

Метод укрупнения интервалов основан на укрупнении периодов времени, к которым относятся уровни ряда динамики. Для этого исходные данные объединяются, т.е. суммируются или усредняются за более продолжительные интервалы времени, пока общая тенденция развития не станет достаточно отчетливой. Например, дневные данные о производстве продукции объединяются в декадные, месячные в квартальные, годовые в многолетние. Достоинство метода в его простоте. Недостаток в том, что сглаженный ряд существенно короче исходного.

Метод скользящей средней состоит в том, что на основе исходных данных рассчитываются подвижные средние из определенного числа сначала первых по счету уровней ряда, затем из такого же числа уровней, начиная со второго, с третьего и т.д. Средняя величина как бы скользит по динамическому ряду, передвигаясь на один интервал. В скользящих средних сглаживаются случайные колебания.

Схема расчета 3-х уровневой скользящей средней величины

Интервал времени

(номер по порядку)

Фактические уровни ряда динамики

у i

Скользящие средние

у ск

у 1

у 2

у 3

у 4

у ск3

у 5

у ск4

у 6

Сглаженный ряд динамики короче исходного на величину (l – 1) , если укрупнение производится по нечетному числу уровней, где l – длина периода укрупнения. Например, если l = 3, то выровненный ряд на 2 уровня короче. Таким образом сглаженный ряд не на много короче исходного.

Метод аналитического выравнивания заключается в замене фактических уровней ряда динамики их теоретическими значениями, вычисленными на основе уравнения тренда:

Расчет параметров уравнения производится методом наименьших квадратов:

где у – фактические уровни;у ti – соответствующие им во времени выровненные (расчетные) уровни.

Если развитие осуществляется в арифметической прогрессии (с равными цепными абсолютными приростами), то для выравнивания используют линейную функцию :

Если наблюдается динамика в геометрической прогрессии, (с равными цепными темпами роста), то необходимо использовать показательную функцию :

у t = а 0 а 1 t .

Если развитие происходит с равными темпами прироста, используется степенная функция , например второго порядка (парабола):

у t = а 0 + а 1 t + а 2 t 2 .

Критерием правильности выбора уравнения тренда служит ошибка аппроксимации . Она представляет собой среднее квадратическое отклонение фактических уровней ряда динамики от теоретических:

Оптимальным считается уравнение с наименьшей ошибкой аппроксимации.

Рассмотрим «технику» выравнивания ряда динамики по линейной функции :


где а 0 , а 1 – параметры уравнения прямой; t – показатели времени (как правило, порядковый номер периода или момента времени).

Параметры прямой а 0 и а 1 , удовлетворяющие методу наименьших квадратов, находят решением следующей системы нормальных уравнений:

где n – число уровней ряда динамики; параметр а 1 соответствует среднему абсолютному приросту.

Для упрощения расчета показателям времени
можно придать такие значения, при которых
, тогда

Для этого в рядах с нечетным числом уровней за начало отсчета времени принимают центральный интервал, где t приравнивают к нулю. По обе стороны от нуля располагают соответственно ряды отрицательных и положительных натуральных чисел, например:

Интервал времени

(номер по порядку)

t i

При четном числе уровней отсчет ведется от двух центральных интервалов, в которых t приравнено к (-1) и (+1) соответственно, а по обе стороны располагаются ряды отрицательных и положительных нечетных чисел, например:

Интервал времени

(номер по порядку)

t i

Схема расчета параметров линейного уравнения

Интервалы времени

Уровни ряда динамики

у i

t i

i t 2

у i t i

у ti

На основе исчисленного уравнения тренда можно производить экстраполяцию – нахождение вероятностных (прогнозируемых) уровней за пределами исходного ряда динамики.

Величина 0,86 характеризует существенную связь между группировочным и результативным признаками.

Величина называется коэффициентом детерминации и показывает долю межгрупповой дисперсии в общей дисперсии.

Наряду с вариацией количественных признаков может наблюдаться и вариация качественных признаков. Такое изучение вариации достигается, как и для долей количественных признаков, посредством вычисления и анализа следующих видов дисперсий.

Внутригрупповая дисперсия доли определяется по формуле

. (3.17)

Средняя из внутригрупповых дисперсий рассчитывается как

. (3.18)

Формула межгрупповой дисперсии имеет следующий вид:

, (3.19)

где n i – численность единиц в отдельных группах;

–доля изучаемого признака во всей совокупности, которая определяется по формуле

. (3.20)

Общая дисперсия имеет вид

. (3.21)

Три вида дисперсии связаны между собой следующим образом:

. (3.22)

Пример 3.4

Определим групповые дисперсии, среднюю из групповых, межгрупповую и общую дисперсии по данным табл. 3.3.

Таблица 3.3

Численность и удельный вес одной из категорий крупного рогатого скота фермерских хозяйств района

Решение

Определим долю дойных коров в целом по трем хозяйствам:

;

Общая дисперсия доли дойных коров:

Внутригрупповые дисперсии:

; ;
.

Средняя из внутригрупповых дисперсий:

Межгрупповая дисперсия:

Используя правило сложения дисперсий, получаем: 0,1025+0,0031=0,1056. Пример решен правильно.

Пример 3.5

По данным выборочного обследования заработной платы работников бюджетной сферы получены следующие показатели (табл. 3.4).

Таблица 3.4

Определите:

    среднюю заработную плату по двум отраслям;

    дисперсии заработной платы:

а) среднюю из групповых дисперсий (отраслевых),

б) межгрупповую (межотраслевую),

    коэффициент детерминации;

    эмпирическое корреляционное отношение.

Решение

    Средняя заработная плата работников по двум отраслям рассчитывается по формуле (2.10):

руб.

    Дисперсии заработной платы:

а) средняя из групповых дисперсий по (3.14)

б) межгрупповая дисперсия согласно (3.12)

.

в) общая дисперсия, полученная на основании правила сложения дисперсий (3.15):

    Коэффициент детерминации равен величине

; (3.23)

т.е.
, или 44,24%.

Он показывает, что оплата труда на 44,24% зависит от отраслевой принадлежности работников и на 55,76% – от внутриотраслевых причин.

По формуле (3.16) эмпирическое корреляционное отношение
,

что свидетельствует о существенном влиянии на дифференциацию заработной платы отраслевых особенностей.

Суть состоит в следующем: этот показатель измеряет меру зависимости вариации одной величины от многих других. Он применяется для оценки качества линейной регрессии.

Формула расчета:

R^2 \equiv 1-{\sum_i (y_i — f_i)^2 \over \sum_i (y_i-\bar{y})^2},

  • \bar{y} – ср. арифметическое зависимой переменной;
  • fi – знач. зависимой переменной, предполагаемое по уравнению регрессии;
  • yi – значение исследуемой зависимой переменной.

Детерминация, что это такое — определение

Коэффициент детерминации – часть дисперсии переменной (зависимой), которая обуславливается конкретной моделью зависимости. Так эта единица поможет вычесть долю необъясненной дисперсии в дисперсии зависимой переменной.

Данный показатель может принимать значения в пределах от 0 до 1. Чем его значение ближе к 1, тем связаннее результативный признак с исследуемыми факторами.

Т.к. преступление является результатом связи поведения и личностных качеств, этот показатель в деятельности заинтересованных органов рассчитывается для оценки качества преступного поведения, дает представление, что послужило вероятностной причиной преступления, что является мотивацией, какие этому были причины и условия.

Коэффициент детерминации, что показывает?

Этот коэффициент показывает варианты результативного признака от влияния факторного признака, он тесно связан с числом корреляции. Если связь отсутствует, то показатель равняется нулю, при ее наличии – единице.
Есть определение детерминизма как принципа устройства мира. Основой этого представления является взаимосвязанность всех явления. Это учение отрицает существование вещей вне взаимосвязи с миром.

Противоположностью является индетерминизм, он связан с отрицанием объективных отношений детерминации, или отрицанием причинности.

Генетический детерминизм – вера в то, что любой организм развивается под генетическим контролем.

Под детерминантами преступности в криминологии понимают социальные явления, действия которых могут вызвать преступность.

С помощью расчетов такого рода можно оценить вероятностное социокультурное влияние различных факторов на развитие личности и предположить, как себя будет вести человек, например, в деловом общении, объективно оценить, подходит ли он для государственного управления, или воинской службы.

Так же коэффициент определяет, правильно ли выбран индекс для подсчета коэффициентов бета и альфа. Если в % цифра ниже 75 к определенному индексу, значения бета и альфа к нему будут некорректны.

Индекс детерминации

Индекс детерминации – это квадрат инд. корреляции нелинейных связей. Этим значением характеризуют, на какое количество процентов моделью регрессии объясняются варианты показателей результативной переменной по отношению к своему среднему уровню.

Формула



Коэффициент детерминации скорректированный

Суть данного понятия состоит в следующем: этот индекс показывает долю дисперсии (общей) результативной переменной, объясняющей вариантами факторных переменных, включаемых в модель регрессии: (с увеличением, уменьшением).

Эмпирическое корреляционное отношение измеряет, какую часть общей колеблемости результативного признака вызывает изучаемый фактор. Эмпирическое корреляционное среднее варьирует от 0 до 1.

Находят эмпирическое корреляционное отношение обычно в следующих типах задач:

  • 1) когда по двум рядам данным X и Y необходимо произвести аналитическую группировку
  • 2) группировка уже произведена, необходимо проверить правило сложения дисперсий
  • 3) по двум рядам данным X и Y необходимо найти уравнение регрессии и оценить его значимость

Формула дисперсии альтернативного признака

Исходя из изложенного выше, можно вывести формулу нахождения дисперсии альтернативного признака, если нам известна процентная доля такого признака в общем объеме выборки.

Изначально мы предполагаем, что признак принимает только два значения.

Таким образом, сумма доли элементов, в которых элементы статистического ряда имеют значение признака "нет" и элементов ряда, которые имеют значение признака "да" - равно единице.

Для нахождения среднего значения ряда, подставим значения альтернативных признаков (0 и 1) в формулу нахождения среднего взвешенного значения статистического ряда. Откуда, совершенно очевидно, в знаменателе будет единица, а в числителе - процентное значение элементов "1". То есть ровно процентное значение элементов с признаком "1". (Формула 2)

Формула дисперсии - это средневзвешенное значение квадратов отклонений каждого значения ряда данных. (Формула 3)

Поскольку в нашем ряду данные имеют только два типа значений - "0" и "1", то формула нахождения дисперсии для ряда, имеющего альтернативный признак сводится к Формуле 4. Пояснение. поскольку мы только что вывели, что среднее значение выборки равно р (Формула 2), то значение квадрата разности значения (0/1) и среднего значения, согласно Формулы 1, будет в первом случае (1-p)2 , а во втором случае (1-q)2 , теперь, применив следствие из первой формулы: q = 1 - p, p = 1- q . Получим p2 и q2 . Соответственно, доля значений "0" и "1" равна p и q, в результате в числителе и получается q2 p и p2 q. Сумма долей признаков значений "0" и "1" согласно Формуле 1 равна 1. В итоге Формула 4 и принимает значение pq, которое и будет равно значению дисперсии альтернативного признака. Исходя из найденного значения величины дисперсии альтернативного признака, найдем среднеквадратичное отклонение (Формула 5). Поставив значение из Формулы 1 в Формулу 5, получим формулу среднеквадратичного отклонения для дисперсии ряда с альтернативным признаком.