Молекулы взаимодействуют между собой притягиваются и отталкиваются. Взаимодействие молекул. Как взаимодействуют между собой молекулы – отталкивание молекул

При хаотическом движении молекул происходят многочисленные столкновения молекул газа друг с другом.

Расстояние, которое пролетает молекула между двумя последовательными столкновениями, называется длиной свободного пробега и обозначается λ длины свободного пробега между отдельными столкновениями молекулы могут значительно отличаться друг от друга. Поэтому пользуются средней длиной свободного пробегаλ 1:

λ = (λ 1 + λ 2 +…+ λz) / z.

Если z обозначает среднее число столкновений молекулы за 1 сек., то

λ = υ/z.

Броуновское движение- движение мелких частиц, взвешенных в жидкости или газе, под действием не скомпенсированных ударов молекул вещества.

Диффузия- процесс выравнивания концентраций, обусловленный переносом вещества посредством молекулярного движения.

Масса и размер молекул.

Молекулы имеют чрезвычайно малые размеры. Простые одноатомные молекулы имеют размер порядка 10 –10 м. Сложные многоатомные молекулы могут иметь размеры в сотни и тысячи раз больше. (1 нм = 10 -9 м). Например: диаметр молекулы воды (H 2 O) равен 0,26 нм.

В молекулярно-кинетической теории количество вещества принято считать пропорциональным числу частиц. Единица количества вещества называется молем (моль).

Моль – это количество вещества, содержащее столько же частиц (молекул), сколько содержится атомов в 0,012 кг углерода 12C.Молекула углерода состоит из одного атома.

Таким образом, в одном моле любого вещества содержится одно и то же число частиц (молекул). Это число называется постоянной Авогадро N A:

Постоянная Авогадро – одна из важнейших постоянных в молекулярно-кинетической теории.

Количество вещества ν определяется как отношение числа N частиц (молекул) вещества к постоянной Авогадро N A:

Молярная масса выражается в килограммах на моль (кг/моль). Для веществ, молекулы которых состоят из одного атома, часто используется термин атомная масса.

За единицу массы атомов и молекул принимается 1/12 массы атома изотопа углерода 12 C (с массовым числом 12). Она называется атомной единицей массы (а. е. м.):

Эта величина почти совпадает с массой протона или нейтрона. Отношение массы атома или молекулы данного вещества к 1/12 массы атома углерода 12 C называется относительной массой.


Закон Авогадро : в равных объемах различных газов при одинаковым давлении и температуре содержится одинаковое количество молекул.

Идеальный газ.

Идеальным считается газ, удовлетворяющий следующим условиям:

· объемом всех молекул газа можно пренебречь по сравнению с объемом сосуда, в котором этот газ находится;

· время столкновения молекул друг с другом пренебрежимо мало по сравнению со временем между двумя столкновениями;

· молекулы взаимодействуют между собой только при непосредственном столкновении;

· силы притяжения между молекулами идеального газа ничтожны малы и ими можно пренебречь;

· движение молекул подчиняется закона Ньютона.

Идеальный газ оказывает давление на стенки сосуда за счет упругих ударов его молекул о стенки.

В первых двух главах были рассмотрены электронное строение атомов и молекул, взаимодействия атомов и характеристики атомов и молекул. Однако обычно человек имеет дело не с конкретными атомами и молекулами, а с веществом в одном из агрегатных состояний. В настоящей главе будут выяснены причина нахождения и свойства веществ в различных состояниях.

§ III.1. ВЗАИМОДЕЙСТВИЕ МЕЖДУ МОЛЕКУЛАМИ

Молекула представляет собой частицу, способную к самостоятельному существованию. Это устойчивое электрически нейтральное образование. Однако химическая устойчивость отдельных молекул относительна и проявляется лишь в системах, где расстояния между молекулами значительно больше их собственных размеров.

Уже на расстоянии одного или нескольких нанометров между соседними молекулами возникают заметные силы притяжения (вандерваальсовы силы). При вандерваальсовом взаимодействии электронные облака соседних молекул не перекрываются и химические связи не образуются. При достаточном сближении некоторых молекул может происходить перекрывание электронных облаков и образование новых молекул. Возникающие при этом химические связи могут иметь различную прочность. Относительно малую прочность имеют водородные связи.

При взаимодействии молекул по донорно-акцепторному механизму возникают прочные ковалентные связи.

Вандерваальсовы силы.

Слабые взаимодействия между нейтральными молекулами, проявляющиеся на расстояниях, превосходящих размеры частиц, были впервые обнаружены голландским ученым Ван-дер-Ваальсом. В связи с этим силы, вызывающие подобного рода взаимодействия, называют вандерваальсовыми силами. Силам Ван-дер-Ваальса приписывают электростатическую природу. Обычно в зависимости от природы системы выделяют три составляющие вандерваальсовых сил: ориентационную, индукционную и дисперсионную.

Ориентационная составляющая (или диполь-дипольная) сил Ван-дер-Ваальса представляет собой электростатическое взаимодействие соответствующим образом ориентированных диполей. Энергия ориентационного взаимодействия резко возрастает с увеличением электрического момента диполя молекул и уменьшается с ростом температуры, так как при этом тепловое движение нарушает ориентацию молекул.

В смесях, содержащих полярные и неполярные молекулы, возникает взаимодействие между молекулами, обусловленное электростатическим притяжением между диполями полярных молекул и наведенными (индуцированными) диполями неполярных молекул. Последние возникают в результате поляризации под действием электрических полей диполей, окружающих данную полярную молекулу. Этот эффект называется индукционной составляющей сил Ван-дер-Ваальса. Энергия индукционного взаимодействия Еинй возрастает с увеличением электрического момента диполя и не зависит от температуры, так как наведение диполей определяется напряженностью всего поля и происходит при любой пространственной ориентации молекул.

Межмолекулярное притяжение не исчерпывается ориентационными и индукционными взаимодействиями. Известно большое число веществ, таких, как, например, благородные газы, молекулы которых неполярны и относительно мало поляризуются. И тем не менее эти вещества получены как в жидком, так и в твердом состояниях. Возникновение при этом взаимодействий было впервые объяснено Ф. Лондоном. Он показал, что электростатическое отталкивание между электронами двух каких-либо атомов или молекул уменьшается, если движение электронов происходит таким образом, что они все время оказываются максимально удаленными друг от друга. При таком согласованном движении электронов каждый из атомов можно рассматривать как «мгновенный» электрический диполь, положительный полюс которого расположен в ядре атома, а отрицательный - в точке нахождения данного электрона. При согласованном движении электронов такие мгновенные диполи ориентируются друг к другу противоположно заряженными концами, в результате чего происходит их электростатическое притяжение.

Модель Лондона позволяет определить среднее статистическое

ское всех таких взаимодействий, получившее название дисперсионной составляющей сил Ван-дер-Ваальса.

Дисперсионные силы действуют между любыми атомами или молекулами независимо от их строения. Энергия их взаимодействия возрастает с увеличением эффективных радиусов взаимодействующих микрочастиц, так как при этом растет величина поляризуемости последних.

Все составляющие вандерваальсовых сил притяжения обратно пропорциональны расстоянию в шестой степени между взаимодействующими частицами. На малых расстояниях между молекулами, когда электростатическое отталкивание их ядер и электронов становится больше взаимного притяжения, проявляется действие сил отталкивания. На существование этих сил указывают многие факты, в частности малая сжимаемость жидкостей и твердых тел. Лондон установил, что силы отталкивания обратно пропорциональны расстоянию в двенадцатой степени между частицами.

Таким образом, полную энергию межмолекулярного взаимодействия можно представить как алгебраическую сумму двух слагаемых:

где а и - константы, характеризующие энергию притяжения и отталкивания.

Вандерваальсовым взаимодействиям свойственна небольшая энергия (табл. III.1), соизмеримая с энергией теплового движения частиц и примерно на порядок меньшая энергии химической связи. Эти силы отличаются от ковалентных сил отсутствием направленности и насыщаемости, а также тем, что они проявляются на значительно больших расстояниях.

Таблица III.1 Ориентационная, индукционная и дисперсионная составляющие вандерваальсовых сил некоторых веществ

Водородная связь.

Промежуточный характер между межмолекулярным взаимодействием и ковалентной связью имеет водородная связь. Она возникает между положительно поляризованным атомом водорода и отрицательно поляризованным атомом с большой электроотрицательностью, например атомом фтора, кислорода или азота. Положительно поляризованный атом водорода

обладает уникальными свойствами: очень малым размером и отсутствием внутренних электронных слоев, поэтому он может проникать в электронную оболочку отрицательно поляризованного атома соседней молекулы. Между двумя молекулами возникает взаимодействие, которое имеет электростатический и частично донорно-акцепторный характер. Водородную связь условно записывают как где X и Y - атомы или (точками обозначается собственно водородная связь).

Рассмотрим возникновение водородной связи при взаимодействии двух молекул фторида водорода. В молекуле HF электронная пара смещена к атому фтора, т. е. атом водорода поляризован положительно, а атом фтора - отрицательно. Между положительно поляризованным атомом водорода одной молекулы HF и отрицательно поляризованным атомом фтора второй молекулы возникает водородная связь

Каждый атом водорода в полученном димере связан с двумя атомами фтора одной ковалентной связью и одной водородной связью.

Энергия и длина водородной связи в значительной мере определяются электрическим моментом диполя связи и размерами атома. Длина связи уменьшается, а энергия водородной связи возрастает с увеличением разности атомов X и Y и соответственно электрического момента диполя связи и с уменьшением размера атома Например, у молекул воды, у которых разница кислорода и водорода равна 0,5, длины связи в триаде равны 0,096 нм для и 0,204 нм для энергия водородной связи составляет . У молекул которых разница ЭО фтора с водородом равна 1,9, длины связей и одинаковы и равны 0,113 нм, энергия водородной связи составляет т. е. соизмерима с энергией ковалентной связи.

Обычно же энергия водородной связи лежит в пределах , т. е. она больше энергии межмолекулярного взаимодействия, но значительно меньше энергии ковалентной связи. Водородная связь имеет весьма широкое распространение. Она встречается в неорганических и органических соединениях. Водородная связь иногда определяет структуру вещества и заметно влияет на физико-химические свойства. Важную роль играет водородная связь в процессах кристаллизации и растворения веществ, образования кристаллогидратов, ассоциации молекул и др. Примером полимерных ассоциатов может служить фторид водорода:

Вследствие ассоциации фтороводородная кислота более слабая кислота по сравнению с другими галогеноводородными кислотами. В результате ассоциации температура кипения HF значительно выше температуры кипения Способностью к ассоциации обладают вода, аммиак, спирты и другие соединения.

Кроме межмолекулярной водородной связи наблюдается внутримолекулярная связь, объединяющая атомы одной и той же молекулы. Ниже приведены две молекулы с внутримолекулярной водородной связью:

При образовании внутримолекулярной водородной связи теряется способность к ассоциации молекул. Поэтому изомеры с внутримолекулярной водородной связью более летучи, хорошо растворяются в органических растворителях и менее реакционноспособны.

Донорно-акцепторное взаимодействие молекул.

При наличии у атомов одной из молекул свободной орбитали, а у атомов другой молекулы - электронной пары между этими молекулами может возникнуть взаимодействие по донорно-акцепторному механизму. Донорно-акцепторное взаимодействие возможно как между одинаковыми, так и между разными молекулами. В первом случае возникают полимерные молекулы, например и др. Например, в молекуле

Энергия межмолекулярного донорно-акцепторного взаимодействия зависит от природы взаимодействующих молекул и изменяется в широких пределах: от значений, характерных для вандерваальсовых сил, до значений, отвечающих обычным межатомным ковалентным связям. Например, энергия межмолекулярной донорно-акцепторной связи в комплексе равна а в комплексе

То, что молекулы взаимодействуют друг с другом, следует хотя бы из того, что существуют жидкости и твердые тела: ведь иначе они распались бы на отдельные молекулы, превратившись в газы!

Как взаимодействуют молекулы? Ответ на этот вопрос можно получить, исследуя свойства твердых тел в следующих простых опытах.

Попробуйте сжать камень - вряд ли у вас это получится. Дело в том, что в твердых телах молекулы расположены вплотную друг к другу и поэтому при сжатии молекулы как бы «упираются» одна в другую. Другими словами, когда молекулы находятся на очень близком расстоянии, они отталкиваются друг от друга.

Благодаря этому отталкиванию вы не проваливаетесь сквозь пол: молекулы, из которых состоит материал подошв, «упираются» в молекулы, из которых состоит пол. Эти силы отталкивания между молекулами схематически изображены на рис. 6.3, а.

Однако твердые тела сопротивляются не только сжатию, но и растяжению. А это означает, что при увеличении расстояния отталкивание между молекулами сменяется притяжением.

Рис. 6.3. Мы не проваливаемся сквозь пол благодаря отталкиванию молекул друг от друга (а); пытаясь разорвать нить, вы чувствуете силы притяжения между молекулами в малом сечении нити (б)

Поставим опыт

Чтобы почувствовать, насколько велики силы притяжения между молекулами, попробуйте разорвать руками капроновую нить сечением 1 мм 2 . Трудно? А ведь усилиям вашего тела противостоят силы притяжения крошечных молекул в малом сечении нити. Эти силы схематически показаны на рис. 6.3, б.

Наблюдения и опыты показывают, что притягиваются друг к другу не только молекулы одного и того же вещества, но и молекулы разных веществ.

Почему слипаются мокрые волосы?

Ещё со школы мы знаем – все вокруг нас состоит из молекул, мельчайших частиц, что беспрестанно взаимодействуют между собой. Давайте обновим наши знания и вспомним, почему камень трудно сжать в руках, а вода может склеить разорвавшийся лист дерева.

Как взаимодействуют между собой молекулы – взаимное притяжение молекул

Все вокруг нас: жидкие и твёрдые предметы, газообразные вещества состоят из мельчайших частиц – молекул, которые непрерывно и постоянно двигаются между собой. Основной причиной того, что предметы не рассыпаются на молекулы, является их притяжение друг к другу. Наука доказала, что взаимное притяжение действует всегда. Каждая молекула притягивается к другой и к ним тянутся все остальные.

  • Твёрдые тела остаются в своей форме, а жидкости не распадаются на капли за счёт межмолекулярного соединения. Такое притяжение мы не увидим глазами, оно слишком мало. Действует эта сила на сверхмалых расстояниях, таких как размеры самих частиц.
  • Разбив тарелку и пытаясь соединить два куска вместе она не восстановится. Пытаясь приблизить части разбитой тарелки мы приближаем только малую часть молекул, из которых она состоит. Большая часть частиц остаётся на довольно большом расстоянии, недостаточном для вступления в силу действия притяжения молекул. Однако смочив разорванный лист с дерева водой, он слипнется. Мы создадим достаточное межмолекулярного притяжение молекул воды к молекулам листика для того, чтобы склеить разорванный лист.
  • В природе сила притяжения молекул просматривается в намокании твёрдых тел. Возьмем кусок стекла и горизонтально его соприкоснём с поверхность воды. При поднятии вверх от воды нам придется применить небольшое усилие, чтобы «оторвать» стекло от поверхности. Нижняя часть, которая соприкасалась с водой, после поднятия стекла будет мокрой. Это означает, что при отрыве стекла от поверхности воды мы преодолеваем силу притяжения молекул воды между собой. Сам разрыв происходил не между молекулами стекла, а между молекулами воды. Тем самым мы убеждаемся, что притяжение между молекулами разных веществ не одинаково. У одних предметов притяжение частиц больше и их труднее разломать или растянуть, а у других – слабее.
  • Лист бумаги проще порвать, преодолев притяжение молекул, чем лист железа. В приведённом примере молекулы воды притягиваются сильнее, чем молекулы стекла. Однако вода не смачивается жирными веществами. Например, опустив кусок парафина в воду мы вытащим его сухим. Это докажет что притяжение молекул парафина сильнее притяжения молекул воды.

Как взаимодействуют между собой молекулы – отталкивание молекул

Молекулы притягиваются друг к другу, но не слипаются вместе. Между крохотными частицами есть промежутки. Если молекулы сжать слишком близко, то они оттолкнутся друг от друга. Межмолекулярное отталкивание вступает в силу, когда расстояние между молекулами становится меньше размера самих частиц и стремится к нулю. Наглядно силу отталкивания демонстрирует губка, которая после сжатия в руке восстанавливает свою первоначальную форму. При сжатии губки мы усилием сжимаем её молекулы на очень близкое расстояние, меньшее чем размеры молекул, когда и возникает сила взаимного отталкивания всех молекул.

Молекулы, взаимодействуют между собой путём взаимного притяжение и отталкивания. Эти процессы зависят от расстояния, на котором находятся молекулы друг от друга: если межмолекулярного расстояние больше размера самих частиц – они притягиваются, если меньше – отталкиваются. Действие притяжения и отталкивания молекул также зависит от рода вещества. Твёрдые тела имеют более сильное притяжение, чем молекулы жидких веществ и более слабое отталкивание. Монету не сжать в руке, а молекулы газообразных веществ сильнее отталкиваются друг от друга, что позволяет газам не формироваться в предметы.