Презентация. География альтернативной энергетики. Урок географии "альтернативные источники энергии"

ЭНЕРГЕТИКА МИРА

Энергетика относится к так называемым "базовым" отраслям промышленности: ее развитие является непременным условием развития всех других отраслей промышленности и всей экономики любой страны. Она также относится к "авангардной тройке".

Энергетика включает в себя совокупность отраслей, снабжающих экономику энергоресурсами. В нее входят все топливные отрасли и электроэнергетика, включая разведку, освоение, производство, переработку и транспортировку источников тепловой и электрической энергии и самой энергии.

В мировом хозяйстве развивающиеся страны выступают главным образом в качестве поставщиков, а развитые - потребителей энергии.

В развитии мировой энергетики решающую роль сыграл энергетический кризис начала 70-х гг.

Цена на нефть (1965-1973 гг.) была значительно ниже среднемирового уровня на другие энергоносители. В результате нефть вытеснила другие виды топлива из топливно-энергетического баланса (ТЭБ) в экономически развитых странах. На смену угольному этапу пришел нефтегазовый, продолжающийся и сейчас.

Таблица 6. Изменение структуры ТЭБ мира (в %)

Это оказалось возможным благодаря неэквивалентному обмену, который практикуется между развитыми и развивающимися странами в течение многих лет. При подъеме цен на нефть в начале 70-х годов (контроль над которыми осуществляла уже созданная в 1960 г. Организация стран-экспортеров нефти - ОПЕК) разразился энергетический кризис; т.к. основные запасы этого ценного сырья сосредоточены в развивающихся странах.

Для ослабления последствий кризиса в ведущих капиталистических странах были разработаны национальные энергетические программы, в которых основной упор был сделан на:
- экономию энергии;
- снижение доли нефти в топливно-энергетическом балансе;
- приведение структуры потребления энергоресурсов в соответствие с собственной ресурсной базой, уменьшение зависимости от импорта энергоносителей.

В результате снизилось потребление энергии, изменилась структура ТЭБ: доля нефти начала сокращаться, возросло значение газа, а сокращение доли угля приостановилось, т.к. уголь развитые страны обладают большими запасами углей. Энергокризис способствовал постепенному переходу к новому, энергосберегающему типу развития, который оказался возможным благодаря научно-техническому прогрессу.

Но зависимость ведущих капиталистических стран от импорта энергетического сырья продолжает сохраняться. Только Россия и Китай полностью обеспечивают себя топливом и энергией за счет собственных ресурсов и даже экспортируют их. А так как основным собственным энергоресурсом многих развитых стран является уголь, то не случайно, что в последнее десятилетие вновь выросло его значение в топливно-энергетическом балансе.

Нефтяная промышленность мира

Нефтяная промышленность - одна из важнейших и наиболее быстро развивавшихся до последнего времени отраслей тяжелой промышленности. Основная часть ее продукции используется в энергетических целях, в связи с чем она относится к группе отраслей энергетики. Часть нефти и нефтепродуктов идет в нефтехимическую переработку.

Главная особенность географии мировых ресурсов нефти заключается в том, что большая их часть приходится на развивающиеся страны, в первую очередь Ближнего Востока. В 19 гигантских месторождениях Аравийского полуострова сосредоточена 1/2 нефтяных богатств планеты.

Регион (страна) Запасы нефти, млн.т Доля в мир. запасах, % Доля в мир. добыче, % Добыча нефти (1994 г.), млн.т
Мир 136094 100,0 100,0 3000,0
Ближний и Средний Восток 89440 65,7 30,7 921,7
6021 4,4 11,0 329,5
Америка 22026 16,2 26,8 804,0
Африка 8301 6,1 10,6 306,1
Западная Европа 2254 1,7 93 277,6
СНГ и Восточная Европа 8052 5,9 12,0 361,1
в т. ч.: СНГ** 7755 5,7 11,6 347,1
* Исключая Ближний и Средний Восток
**Данные по СНГ включают достоверные и часть разведанных запасов.

Среди промышленно развитых стран можно выделить два типа государств: с одной стороны, США, Россия, Канада, обладающие собственными запасами и мощной нефтедобычей; с другой - европейские страны (исключая Норвегию и Великобританию), а также Япония и ЮАР, которые лишены собственных ресурсов, и хозяйство которых базируется целиком на импортной нефти. Тем не менее, доля развитых стран в мировой нефтедобыче повышается (1970 г. - 12% мировой добычи, 1994 г. - 45%, около 1,5 млрд. т нефти). При этом на долю стран ОПЕК приходится 41 % мировой добычи (1,2 млрд. т).

Таблица 8. Десять первых стран мира по добычи нефти

Удорожание нефти за последние годы стимулировало освоение месторождений, разведанных в районах со значительно более сложными условиями добычи и транспортировки нефти. Велика доля морских месторождений нефти (25% разведанных запасов). На морях поисково-разведочные работы ведутся уже на глубинах до 800 м при удалении от берега на 200-500 км. Наиболее крупные морские месторождения нефти разведаны в Персидском заливе и у юго-восточных берегов Аравийского полуострова, в Мексиканском заливе, Северном море (в британском и норвежском его секторах), у северного побережья Аляски, берегов Калифорнии, у западного побережья Африки, островов Юго-Восточной Азии. У некоторых стран на шельфовых месторождениях сосредоточена основная часть разведанных запасов нефти, например в США -более 1/2, Брунее и Катаре - около 2/3, Анголе и Австралии - более 4/5, Бахрейне - 9/10, а в Норвегии и Великобритании - практически около 100%.

Сохранившийся территориальный разрыв между основными районами добычи и потребления нефти (главная особенность нефтяной промышленности мира) приводит к колоссальным масштабам дальних перевозок нефти. Она остается грузом номер один мирового морского транспорта.

Главные направления международных перевозок нефти:
Персидский залив -> Япония
Персидский залив -> Зарубежная Европа
Карибское море -> США
Юго-Восточная Азия -> Япония
Северная Африка -> Зарубежная Европа

Главные из мировых грузопотоков нефти начинаются от крупнейших нефтяных портов Персидского залива (Мина-эль-Ахмади, Харк и др.) и идут к Западной Европе и Японии. Самые крупные танкеры следуют дальним путем вокруг Африки, менее крупные - через Суэцкий канал. Меньшие грузопотоки идут из стран Латинской Америки (Мексика, Венесуэла) к США и Западной Европе.

Резко изменилась география импорта нефти. Выросла доля Канады, Мексики, Венесуэлы как поставщиков нефти в США. На страны Ближнего Востока приходится теперь около 5% американского импорта нефти.

Нефтепроводы проложены не только по территории многих стран мира, но и по дну морей (в Средиземном, Северном).

В отличие от нефтедобычи основная часть мощностей по переработке сосредоточена в ведущих промышленно развитых странах (около 70% мощностей НПЗ мира, в т.ч. США - 21,3%, Европа - 21,6%, СНГ - 16,6%, Япония - 6,2%).

Выделяются такие районы, как побережье Мексиканского залива, район Нью-Йорка в США, Роттердам в Нидерландах, Южная Италия, побережье Токийского залива в Японии, побережье Персидского залива, побережье Венесуэлы, район Поволжья в России.

В размещении нефтеперерабатывающей промышленности действуют две противоположные тенденции: одна из них - "рыночная" (отрыв переработки нефти от мест добычи и строительство НПЗ в странах-потребителях нефтепродуктов), а другая - "сырьевая" - тенденция к приближению нефтепереработки к местам добычи нефти. До последнего времени преобладала первая тенденция, что позволяло ввозить сырую нефть по низким ценам, а полученные из нее нефтепродукты сбывать по ценам во много раз выше.

Но в последние годы действует тенденция к строительству НПЗ в некоторых развивающихся странах, особенно на узлах транспортных коммуникаций, на важных морских путях (например, на островах Аруба, Кюрасао - в Карибском море, в Сингапуре, Адене, в г. Фри-порт на Багамских островах, в г. Санта-Крус на Виргинских островах).

Строительство НПЗ в развивающихся странах стимулируется также принятием в экономически развитых странах более строгих мер по охране природы (вынос "экологически грязных" производств).

Газовая промышленность мира

Основными запасами природного газа обладают государства СНГ (40%), в т.ч. Россия (39,2%). Доля стран Ближнего и Среднего Востока в мировых запасах газа составляет около 30%, Северной Америки около 5%, Западной Европы 4% (1994 г.).

Самыми богатыми природным газом из зарубежных стран являются Иран, Саудовская Аравия, США, Алжир, ОАЭ, Нидерланды, Норвегия, Канада.

В целом же доля промышленно развитых капиталистических стран в мировых запасах природного, газа намного меньше, чем развивающихся. Однако основная часть добычи сосредоточена в промышленно развитых странах.

Таблица 9. Разведанные запасы, добыча, потребление природного газа (на 1 янв.1995 г.)

регион (страна) доля в мировых запасах (%) добыча (млрд. м 3) потребление (млрд. м 3)
Мир 100.0 2215 2215
Северная Америка 4.9 658 654
Латинская Америка 5.1 97 101
Западная Европа 3.8 244 335
Восточная Европа 40.2 795 720
в т.ч. Россия 39.2 606 497
Африка 6.9 87 46
Бл. и Средний Восток 32.0 136 130
Остальная Азия*, Австралия и Океания 7.0 198 229
*Исключая Ближний и Средний Восток.

Мировая добыча природного газа (ПГ) ежегодно возрастает, и в 1994 г. превысила 2 трлн. м 3 . География добычи ПГ существенно отличается от добычи нефти. Более 2/5 (40%) его добывается на территории государств СНГ (из которых 80% - в России, далеко опережающей все остальные страны мира) и в США (25% процентов мировой добычи). Затем, многократно отставая от первых двух стран, идут Канада, Нидерланды, Норвегия, Индонезия, Алжир. Все эти государства являются крупнейшими экспортерами природного газа. Основная часть экспортируемого газа идет по газопроводам, а также транспортируется в сжиженном виде (1/4).

Таблица 10. Десять первых стран мира по добычи природного газа

Протяженность газопроводов быстро растет (сейчас в мире - 900 тыс. км газопроводов). Крупнейшие межгосударственные газопроводы действуют в Северной Америке (между канадской провинцией Альберта и США); в Западной Европе (от крупнейшего голландского месторождения Гроннинген в Италию через территорию Германии и Швейцарии; из норвежского сектора Северного моря в Германию, Бельгию и Францию). С 1982 г. действует газопровод из Алжира через Тунис и далее по дну Средиземного моря в Италию.

Практически во все страны Восточной Европы (кроме Албании), а также в рад стран Западной Европы - в Германию, Австрию, Италию, Францию, Швейцарию, Финляндию - поступает газ из России по газопроводам. Россия является крупнейшим в мире экспортером природного газа.

Растут межгосударственные морские перевозки природного газа в сжиженном виде (СПГ) с использованием специальных газовозных танкеров. Крупнейшими поставщиками СПГ являются Индонезия, Алжир, Малайзия, Бруней. Около 2/3 всего экспортируемого СПГ ввозится в Японию.

Угольная промышленность мира

Угольная промышленность - наиболее старая и развитая из всех отраслей топливно-энергетического комплекса в промышленно развитых странах.

По оценке, суммарные запасы угля во всем мире определены в 13-14 трлн. т (52% - каменный уголь, 48% - бурый).

Более 9/10 достоверных запасов каменного угля, т.е. извлекаемых с использованием существующих технологий, сосредоточено: в Китае, в США (более 1/4); на территории государств СНГ (более 1/5); в ЮАР (более 1/10 мировых запасов). Из других промышленно развитых стран можно выделить запасы угля в ФРГ, Великобритании, Австралии, Польше, Канаде; из развивающихся - в Индии, Индонезии, Ботсване, Зимбабве, Мозамбике, Колумбии и Венесуэле.

В последние десятилетия традиционная добыча угля в странах Западной Европы значительно сократилась, и основными центрами добычи стали Китай, США и Россия. На их долю приходится почти 60% всей угледобычи мира, которая составляет 4,5 млрд. т. в год. Далее можно отметить ЮАР, Индию, ФРГ, Австралию, Великобританию (добыча превышает 100 млн. т в год в каждой из этих стран).

Существенное значение имеет также качественный состав углей, в частности, доля коксующихся углей, используемых в качестве сырья для черной металлургии. Наиболее велика их доля в угольных запасах Австралии, ФРГ, Китая, США.

В последние годы во многих экономически развитых странах угольная промышленность стала структурно кризисной. Сокращалась добыча угля в основных традиционных районах (старопромышленных), например, в Рурском - ФРГ, на Севере Франции, в Аппалачах - США (что повлекло за собой социальные последствия, в т.ч. безработицу).

Иными тенденциями развития отличалась угольная промышленность Австралии, ЮАР и Канады, где происходил рост добычи с ориентацией на экспорт. Так, Австралия обогнала крупнейшего экспортера угля - США (доля ее в мировом экспорте - 2/5). Это связано со спросом на уголь Японии и наличием в самой Австралии недалеко от побережья крупных месторождений, пригодных для разработки открытым способом. Ричардс-Бей - крупнейший специализированный угольный порт в ЮАР (экспорт угля). Мощные морские грузопотоки угля образовали так называемые "угольные мосты":
США -> Западная Европа
США -> Япония
Австралия -> Япония
Австралия -> Западная Европа
ЮАР -> Япония

Крупными экспортерами становятся Канада и Колумбия. Основная часть внешнеторговых перевозок угля осуществляется морским транспортом. В последние годы большим спросом, чем коксующийся (технологический) уголь, пользуется энергетический уголь (более низкого качества - для производства электроэнергии).

Подавляющая часть разведанных запасов бурого угля и его добычи сосредоточена в промышленно развитых странах. Размерами запасов выделяются США, ФРГ, Австралия, Россия.

Основная часть бурого угля (более 4/5) потребляется на тепловых станциях, расположенных вблизи его разработок. Дешевизна этого угля объясняется способом его добычи - почти исключительно открытым. Это обеспечивает производство дешевой электроэнергии, что привлекает в районы буроугольных разработок электроемкие производства (цветная металлургия и др.).

Электроэнергетика

Всего в мире ежегодно потребляется 15 млрд. т условного топлива в качестве энергоресурсов. Суммарная мощность электростанций всего мира в начале 90-х годов превышала 2,5 млрд. кВт, а выработка электроэнергии вышла на уровень 12 трлн. кВт ч в год.

Более 3/5 всей электроэнергии вырабатывается в промышленно развитых странах, среди которых по общей выработке выделяются США, СНГ (Россия), Япония, Германия, Канада, Китай.

Таблица 11. Десять первых стран мира по размерам производства электроэнергии

В большинстве промышленно развитых стран созданы единые энергосистемы, хотя в США, Канаде, Китае и Бразилии они отсутствуют. Есть межгосударственные (региональные) энергосистемы.

Из всей производимой в мире электроэнергии (на начало 90-х гг.) около 62% вырабатывается на ТЭС, около 20% на ГЭС и около 17% - на АЭС и 1% - на использовании альтернативных источников.

В некоторых странах на ГЭС вырабатывается значительно большая часть электроэнергии: в Норвегии (99%), Австрии, Новой Зеландии, Бразилии, Гондурасе, Гватемале, Танзании, Непале, Шри-Ланке (80-90% общей выработки электроэнергии). В Канаде, Швейцарии - более 60%, в Швеции и Египте 50-60 %.

Степень освоенности гидроресурсов в разных регионах мира различна (в целом по миру лишь 14%). В Японии гидроресурсы используются на 2/3, в США и Канаде - на 3/5, в Латинской Америке - на 1/10, а в Африке используется менее чем 1/20 гидроресурсов.

В настоящее время из 110 действующих ГЭС с мощностью более 1 млн. кВт более 50% находятся в промышленно развитых странах с рыночной экономикой (в Канаде 17, США - 16). Крупнейшие по мощности из действующих за рубежом ГЭС: бразильско-парагвайская "Итайпу" - на реке Парана - мощностью 12,6 млн. кВт; венесуэльская "Гури" на р.Карони и др. Крупнейшие ГЭС в России построены на реке Енисей: Красноярская, Саяно-Шушенская ГЭС (мощностью более 6 млн. кВт).

В некоторых странах возможности использования экономического гидроэнергетического потенциала почти исчерпаны (Швеция, ФРГ), в других - только начинается его использование.

Около 1/2 мощностей мировых ГЭС и выработки на них электроэнергии приходится на США, Канаду и страны Европы.

Однако в целом по миру основную роль в электроснабжении выполняют ТЭС, работающие на минеральном топливе, главным образом на угле, нефти или газе.

Наиболее велика доля углей в теплоэнергетике ЮАР (почти 100%), Австралии (около 75%), Германии и США (более 50%).

Угольный топливно-энергетический цикл - один из экологически наиболее опасных. Поэтому расширяется использование "альтернативных" источников энергии (солнца, ветра, приливов и отливов). Но наибольшее практическое применение получило использование ядерной энергии.

До начала 90-х годов ядерная энергетика развивалась опережающими темпами по отношению ко всей электроэнергетике. Доля АЭС возрастала особенно быстро в высокоразвитых в экономическом отношении странах и районах, дефицитных по другим энергоресурсам.

Однако в связи с резким удешевлением нефти и газа, т.е. уменьшением стоимостных преимуществ АЭС перед ТЭС, а также в связи с психологическим воздействием аварии на Чернобыльской АЭС (1986 г., в бывш. СССР) и активизацией противников ядерной энергетики - темпы ее роста заметно снизились.

Тем не менее, в 29 странах мира действуют АЭС. Годовая выработка электроэнергии превысила 1 трлн. кВт/ч. Больше всего доля АЭС в общем производстве электроэнергии во Франции и Бельгии. Более 2/3 суммарной мощности всех АЭС мира сосредоточено в странах: США, Франция, Япония, Германия, Великобритания и Россия. В Литве доля АЭС в общей выработке электроэнергии составляет 78%, во Франции - 77%, в Бельгии - 57%, в Швеции - 47%, тогда как в США - 19%, в России - 11%.

На долю атомных станций США в суммарной мощности АЭС мира приходится около 40%.

Крупнейший атомно-энергетический комплекс - "Фукусима" расположен на о. Хонсю в Японии, он насчитывает 10 энергоблоков общей мощностью более 9 млн. кВт.

Альтернативные источники пока обеспечивают лишь очень небольшую часть мировой потребности в электроэнергии. Только в некоторых странах Центральной Америки, на Филиппинах и в Исландии существенное значение имеют геотермальные электростанции; в Израиле, на Кипре довольно широко используют солнечную энергию.

Традиционные источники энергии К традиционным источникам энергии относятся нефть, газ и уголь. К их преимуществам по сравнению с нетрадиционными источниками энергии можно отнести налаженную технологию добычи и сбыта, а к недостаткам - загрязнение окружающей среды, сложность извлечения и ограниченность запасов. В настоящее время нефть является основным энергоресурсом в мировой энергетической системе, ее доля в суммарном энергопотреблении составляет около 39%, а в некоторых странах этот показатель превышает 60%. Нефть и нефтепродукты традиционно используются как сырье для производства электро- и теплоэнергии, в качестве моторного топлива, а также как полуфабрикат для химической промышленности. Мировые запасы нефти составляют около 140 млрд. тонн. Основные ресурсы сосредоточены на Ближнем и Среднем Востоке (64%). Второе место по объему разведанных запасов занимает Америка (15%), за ней следуют Центральная и Восточная Европа (8%) и Африка (7%). Доля газа в мировом энергопотреблении составляет на данный момент около 23%. Газ используется в топливно-энергетической, металлургической, химической, пищевой и целлюлозной промышленности. При этом природный газ является более экологически чистым видом топлива, чем нефть или уголь. Для получения одинакового количества энергии объем образующейся двуокиси углерода при сжигании газа на 50% меньше, чем при сжигании угля, и на 30% меньше, чем при сжигании мазута. На начало 2004 года мировые доказанные запасы природного газа составляли около 164 трлн. куб. м. Основные месторождения сосредоточены в двух регионах - в России (34,6%) и на Среднем Востоке (35,7%). По оценкам экспертов, доля угля в структуре мирового топливно-энергетического баланса на 1 января 2004 года составляла около 24%. Основными отраслями, потребляющими уголь, являются металлургия и электроэнергетика. При этом на долю "энергетических углей" приходится около 75% от общего объема добываемых запасов, на долю "металлургических" - 25%. Несмотря на значительные объемы разведанных запасов, уголь значительно уступает природному газу и нефти по затратным и экологическим показателям его использования, в результате чего спрос на этот вид сырья неуклонно падает. В настоящее время доказанные мировые запасы угля составляют около 600 млрд. тонн. Большая часть угольных запасов сосредоточена в Северной Америке (24,2%), Азиатско-Тихоокеанском регионе (30,9%) и странах СНГ (30,6%). На долю атомной энергии приходится около 7% от общемирового производства энергии, причем в некоторых странах, например во Франции, почти вся энергия вырабатывается на АЭС. Довольно долгое время считалось, что уран сможет со временем заменить органическое топливо, т. к. себестоимость атомной энергии значительно ниже, чем энергии, полученной при сжигании нефти, газа или угля. Однако после серии аварий на АЭС, самые крупные из которых случились в мае 1979 года в Три-Майл-Айленде (США) и в апреле 1986 года в Чернобыле (СССР), во всем мире начались движения "зеленых" против строительства атомных электростанций. В настоящее время экологи имеют очень сильное влияние в некоторых промышленно развитых странах и не дадут развиваться этой отрасли энергетики. Гидроэнергетика дает около 7% энергии, используемой во всем мире. В некоторых странах, например в Норвегии, почти вся электроэнергия вырабатывается на гидроэлектростанциях. Вода является одним из самых экологически чистых и дешевых энергоресурсов.

Энергетика — основа развития производительных сил и самого существования человеческого общества. Она обеспечивает работу силового аппарата (моторов) в промышленности, на и в быту. В ряде промышленных производств она участвует также в технологических процессах (например, электролиз в , и др.). Энергетика в значительной степени определяет развитие НТП. Различные виды энергетики (электрическая, тепловая и др.) обеспечивают условия проживания и деятельности населения.

Энергетика — одна из базовых отраслей тяжелой промышленности. Она включает совокупность отраслей:

  • добычу первичных энергоресурсов коммерческого значения (нефти, попутного и природного газов, угля, горючих сланцев, руд радиоактивных металлов, использование гидроэнергии);
  • переработку первичных энергоресурсов в более высокого качества продукцию и ее специализацию с учетом потребителей (кокс, мазут, бензин, электроэнергия и т.д.). Все они относятся к коммерческим видам энергоресурсов в отличие от некоммерческих (дрова и др.);
  • специальные (наряду с общими) виды — нефтепроводы, газопроводы, продуктопроводы, углепроводы, линии электропередачи.

Энергетика (ее топливные отрасли) одновременно сырьевая база для нефтехимической и . Одни из ее видов продукции (например, природный газ) непосредственно без предварительной переработки используются в производстве таких видов химических продуктов, как аммиак, метиловый спирт и т.д. Все остальные подвергаются термической переработке в целях их облагораживания, выделения из сложного состава топлив отдельных компонентов (кокса и коксовых газов из угля, этана и этилена, пропана, пропилена и других из нефти и попутных газов). Эти новые полупродукты находят самое широкое применение в нефтехимических и химических производствах. Они позволяют более рационально использовать топливо как углеводородное сырье.

Развитие энергетики тесно связано с реализацией достижений НТП. Они были использованы в разработке новых методов поиска топливных месторождений, в создании уникального оборудования для глубокого бурения скважин (в том числе на морях), систем трубопроводного транспорта, рассчитанного на перекачку больших объемов нефти и газа на дальние расстояния, супертанкеров, мощных агрегатов для глубокой переработки нефти. Особенно большие успехи выявились в : освоение производства электрической энергии на атомных электростанциях.

Уровень развития энергетики — один из важнейших показателей состояния и развития хозяйства государств, регионов и мира в целом. Потребление всех видов топлива и электрической энергии продолжает возрастать. Затраты на разведку топливных месторождений, их разработку, транспортировку топлива и его переработку в другие виды энергии остаются весьма большими. Их могут осуществлять только мощные компании и государства.

Современная энергетика по объемам добычи всех видов топлива — самая материалоемкая отрасль мировой индустрии. В 1995 г. общее количество добытых и использованных коммерческих его видов составило 12 млрд т условного топлива (т у.т.) и возросло по сравнению с 1950 г. почти в 5 раз. Суммарный физический вес угля и нефти достиг 8 млрд т. Это в 7-8 раз больше, чем было добыто или произведено цемента. Кроме того, некоммерческие виды энергоносителей по оценкам достигают 10% объема коммерческих. С добычей такого количества топлива связаны многие проблемы .

Основные экономические, политические и экологические проблемы функционирования топливной промышленности обусловлены задачами обеспечения потребителей первичными видами энергии, и особенно . Их производство и потребление имеют свою географическую специфику. Это четко прослеживается в сравнении роли регионов в добыче и потреблении топлива в середине 90-х гг.

Проблема обеспечения промышленных регионов мира нефтью всегда оказывала сильное влияние на внешнюю политику экономически , и особенно США. Она была и остается одним из важнейших элементов геополитических глобальных проявлений идеологии их правящих кругов.

Весь мир сегодня в поисках новых источников энергии. Сегодня в мире стали всерьез задумываться над тем, как не допустить разграбления полного истощения природных ресурсов. Ведь лишь при этом условии запасов топлива может хватить на века. К сожалению, многие нефтедобывающие страны не задумываются о последствиях своей деятельности. Они расходуют нефтяные запасы, не задумываясь о будущем. Происшедшее повышение цен на нефть, необходимую не только энергетике, но и транспорту, и химии, заставило задуматься о других видах топлива, пригодных для замены нефти и газа. Особенно альтернативные источники энергии начали искать те страны где нет собственных запасов нефти и газа, и которым приходится их покупать.

Поэтому в общую типологию электростанций включаются электростанции, работающие на так называемых нетрадиционных или альтернативных источниках энергии. К ним относят: энергию приливов и отливов; энергию малых рек;·энергию ветра; энергию Солнца; геотермальную энергию; энергию горючих отходов и выбросов; энергию вторичных или сбросовых источников тепла и другие.

Несмотря на то, что нетрадиционные виды электростанций занимают всего несколько процентов в производстве электроэнергии, в мире развитие этого направления имеет большое значение, особенно учитывая разнообразие территорий стран. В России единственным представителем этого типа ЭС является Паужетская ГеоТЭС на Камчатке мощностью 11МВт. Станция эксплуатируется с 1964 года и уже устарела как морально, так и физически. Уровень технологических разработок России в этой области сильно отстает от мирового. В удаленных или труднодоступных районах России, где нет необходимости строить большую электростанцию, да и обслуживать ее зачастую некому, “нетрадиционные” источники электроэнергии - наилучшее решение.

Возрастанию числа электростанций на альтернативных источниках энергии будут способствовать следующие принципы: более низкая стоимость электроэнергии и тепла, получаемая от нетрадиционных источников энергии, чем от всех других источников; возможность практически во всех странах иметь локальные электростанции, делающие их независимыми от общей энергосистемы; доступность и технически реализуемая плотность, мощность для полезного использования; возобновляемость нетрадиционных источников энергии; экономия или замена традиционных энергоресурсов и энергоносителей; замена эксплуатируемых энергоносителей для перехода к экологически более чистым видам энергии; повышение надежности существующих энергосистем.

Практически каждая страна располагает каким-либо видом этой энергии и в ближайшей перспективе может внести существенный вклад в топливно-энергетический баланс мира.

Солнечная энергия. Солнце - неисчерпаемый источник энергии - ежесекундно дает Земле 80 триллионов киловатт, то есть в несколько тысяч раз больше, чем все электростанции мира. Нужно только уметь пользоваться им. Например, Тибет - самая близкая к Солнцу часть нашей планеты - по праву считает солнечную энергию своим богатством. На сегодня в Тибетском автономном районе Китая построено уже более пятидесяти тысяч гелиопечей. Солнечной энергией отапливаются жилые помещения площадью 150 тысяч квадратных метров, созданы гелиотеплицы общей площадью миллион квадратных метров. Хотя солнечная энергия и бесплатна, получение электричества из нее не всегда достаточно дешево. Поэтому специалисты непрерывно стремятся усовершенствовать солнечные элементы и сделать их эффективнее. Новый рекорд в этом отношении принадлежит Центру прогрессивных технологий компании “Боинг”. Созданный там солнечный элемент преобразует в электроэнергию 37 % попавшего на него солнечного света. Уже в 1981 году через пролив Ла-Манш совершил перелёт первый в мире самолёт с двигателем, работающим от солнечных батарей. Чтобы совершить перелёт на расстояние 262 км, ему потребовалось 5,5 часа. А по прогнозам учёных конца прошлого века, ожидалось, что к 2000 году на дорогах Калифорнии появится около 200000 электромобилей. Возможно, и нам стоит подумать об использовании солнечной энергии в широких масштабах. В частности, в Крыму с его “солнцеобильностью”.

С 1988 года на Керченском полуострове работает Крымская солнечная электростанция. Кажется, самим здравым смыслом определено ее место. Уж если где и строить такие станции, так это в первую очередь в краю курортов, санаториев, домов отдыха, туристских маршрутов; в краю, где надо много энергии, но еще важнее сохранить в чистоте окружающую среду, само благополучие которой, и прежде всего чистота воздуха, целебно для человека. Крымская СЭС невелика - мощность всего 5 МВт. В определенном смысле она - проба сил. Хотя, казалось бы, чего еще надо пробовать, когда известен опыт строительства гелиостанций в других странах.

На острове Сицилия еще в начале 80-х годов дала ток солнечная электростанция мощностью 1 МВт. Принцип ее работы тоже башенный. Зеркала фокусируют солнечные лучи на приемнике, расположенном на 50-метровой высоте. Там вырабатывается пар с температурой более 600 °С, который приводит в действие традиционную турбину с подключенным к ней генератором тока. Неоспоримо доказано, что на таком принципе могут работать электростанции мощностью 10-20 МВт, а также и гораздо больше, если группировать подобные модули, подсоединяя их друг к другу.

Несколько иного типа электростанция в Алькерии на юге Испании. Ее отличие в том, что сфокусированное на вершину башни солнечное тепло приводит в движение натриевый круговорот, а тот уже нагревает воду до образования пара. У такого варианта ряд преимуществ. Натриевый аккумулятор тепла обеспечивает не только непрерывную работу электростанции, но дает возможность частично накапливать избыточную энергию для работы в пасмурную погоду и ночью. Мощность испанской станции имеет всего 0,5 МВт. Но на ее принципе могут быть созданы куда более крупные - до 300 МВт. В установках этого типа концентрация солнечной анергии настолько высока, что КПД паротурбинного процесса здесь ничуть не хуже, чем на традиционных тепловых электростанциях. Тем не менее солнечные фотоэлементы уже сегодня находят свое специфическое применение. Они оказались практически незаменимыми источниками электрического тока в ракетах, спутниках и автоматических межпланетных станциях, а на Земле - в первую очередь для питания телефонных сетей в не электрифицированных районах или же для малых потребителей тока (радиоаппаратура, электрические бритвы и зажигалки и т.п.). Полупроводниковые солнечные батареи впервые были установлены на третьем советском искусственном спутнике Земли (запущенном на орбиту 15 мая 1958 г.).

Энергия ветра. На первый взгляд ветер кажется одним из самых доступных и возобновляемых источников энергии. В отличие от Солнца он может “работать” зимой и летом, днем и ночью, на севере и на юге. Но ветер - это очень рассеянный энергоресурс. Природа не создала “месторождения” ветров и не пустила их, подобно рекам, по руслам. Ветровая энергия практически всегда “размазана” по огромным территориям. Основные параметры ветра - скорость и направление - меняются подчас очень быстро и непредсказуемо, что делает его менее “надежным”, чем Солнце. Таким образом, встают две проблемы, которые необходимо решить для полноценного использования энергии ветра. Во-первых, это возможность “ловить” кинетическую энергию ветра с максимальной площади. Во-вторых, еще важнее добиться равномерности, постоянства ветрового потока. Вторая проблема пока решается с трудом. Существуют интересные разработки по созданию принципиально новых механизмов для преобразования энергии ветра в электрическую. Одна из таких установок порождает искусственный сверхураган внутри себя при скорости ветра в 5 м/с!

Ветровые двигатели не загрязняют окружающую среду, но они очень громоздкие и шумные. Чтобы производить с их помощью много электроэнергии, необходимы огромные пространства земли. Лучше всего они работают там, где дуют сильные ветры. И, тем не менее, всего одна электростанция, работающая на ископаемом топливе, может заменить по количеству полученной энергии тысячи ветряных турбин. При использовании ветра возникает серьезная проблема: избыток энергии в ветреную погоду и недостаток ее в периоды безветрия. Как же накапливать и сохранить впрок энергию ветра? Простейший способ состоит в том, что ветряное колесо движет насос, который накачивает воду в расположенный выше резервуар, а потом вода, стекая из него, приводит в действие водяную турбину и генератор постоянного или переменного тока. Существуют и другие способы и проекты: от обычных, хотя и маломощных аккумуляторных батарей до раскручивания гигантских маховиков или нагнетания сжатого воздуха в подземные пещеры и вплоть до производства водорода в качестве топлива. Особенно перспективным представляется последний способ. Электрический ток от ветроагрегата разлагает воду на кислород и водород. Водород можно хранить в сжиженном виде и сжигать в топках тепловых электростанций по мере надобности.

Морская энергия. В последнее время в некоторых странах снова обратили внимание на те проекты, которые были отвергнуты ранее как малоперспективные. Так, в частности, в 1982 году британское правительство отменило государственное финансирование тех электростанций, которые используют энергию моря: часть таких исследований прекратилась, часть продолжалась при явно недостаточных ассигнованиях от Европейской комиссии и некоторых промышленных фирм и компаний. Причиной отказа в государственной поддержке называлась недостаточная эффективность способов получения “морского” электричества по сравнению с другими его источниками, в частности - атомными. В мае 1988 года в этой технической политике произошел переворот. Министерство торговли и промышленности Великобритании прислушалось к мнению своего главного советника по энергетике Т. Торпа, который сообщил, что три из шести имеющихся в стране экспериментальных установок усовершенствованы и ныне стоимость 1 кВт/ч на них составляет менее 6 пенсов, а это ниже минимального уровня конкурентоспособности на открытом рынке. Цена “морской” электроэнергии с 1987 года снизилась вдесятеро.

Волны. Наиболее совершенен проект “Кивающая утка”, предложенный конструктором С. Солтером. Поплавки, покачиваемые волнами, дают энергию стоимостью всего 2,6 пенса за 1 кВт/ч, что лишь незначительно выше стоимости электроэнергии, которая вырабатывается новейшими электростанциями, сжигающими газ (в Британии это - 2,5 пенса), и заметно ниже, чем дают АЭС (около 4,5 пенса за 1 кВт/ч). Следует заметить, что использование источников альтернативных, возобновляемых видов энергии может достаточно эффективно снизить процент выбросов в атмосферу вредных веществ, то есть в какой-то степени решить одну из важных экологических проблем. Энергия моря может с полным основанием быть причисленной к таким источникам.

Энергия рек. Примерно 1/5 часть энергии, потребляемой во всём мире, вырабатывают на ГЭС. Её получают, преобразуя энергию падающей воды в энергию вращения турбин, которая в свою очередь вращает генератор, вырабатывающий электричество. Гидростанции бывают очень мощными. Так, станция Итапу на реке Парана на границе между Бразилией и Парагваем развивает мощность до13 000 млн. кВт. Энергия малых рек также в ряде случаев может стать источником электроэнергии. Возможно, для использования этого источника необходимы специфические условия (например, речки с сильным течением), но в ряде мест, где обычное электроснабжение невыгодно, установка мини-ГЭС могла бы решить множество локальных проблем. Бесплотинные ГЭС для речек и речушек уже существуют. В комплекте с аккумулятором они могут обеспечить энергией крестьянское хозяйство или геологическую экспедицию, отгонное пастбище или небольшую мастерскую. Опытный образец бесплотинной мини-ГЭС успешно зарекомендовал себя на речках Горного Алтая.

Энергия мирового океана. Резкое увеличение цен на топливо, трудности с его полученном, сообщения об истощении топливных ресурсов - все эти видимые признаки энергетического кризиса вызвали в последние годы во многих странах значительный интерес к новым источникам энергии, в том числе к энергии Мирового океана. Известно, что запасы энергии в Мировом океане колоссальны, ведь две трети земной поверхности (361 млн. км2) занимают моря и океаны - акватория Тихого океана составляет 180 млн. км2. Атлантического - 93 млн. км2, Индийского - 75 млн. км2. Так, тепловая (внутренняя) энергия, соответствующая перегреву поверхностных вод океана по сравнению с донными, скажем, на 20 градусов, имеет величину порядка 1026 Дж. Кинетическая энергия океанских течений оценивается величиной порядка 1018 Дж. Однако пока что люди умеют использовать лишь ничтожные доли этой энергии, да и то ценой больших и медленно окупающихся капиталовложений, так что такая энергетика до сих пор казалась малоперспективной.

Энергия приливов и отливов. Веками люди размышляли над причиной морских приливов и отливов. Сегодня мы достоверно знаем, что могучее природное явление - ритмичное движение морских вод вызывают силы притяжения Луны и Солнца. Поскольку Солнце находится от Земли в 400 раз дальше, гораздо меньшая масса Луны действует на земные воды вдвое сильнее, чем масса Солнца. Поэтому решающую роль играет прилив, вызванный Луной (лунный прилив). В морских просторах приливы чередуются с отливами теоретически через 6 ч 12 мин 30 с. Если Луна, Солнце и Земля находятся на одной прямой (так называемая сизигия), Солнце своим притяжением усиливает воздействие Луны, и тогда наступает сильный прилив (сизигийный прилив, или большая вода). Когда же Солнце стоит под прямым углом к отрезку Земля-Луна (квадратура), наступает слабый прилив (квадратурный, или малая вода). Сильный и слабый приливы чередуются через семь дней. Однако истинный ход прилива и отлива весьма сложен. На него влияют особенности движения небесных тел, характер береговой линии, глубина воды, морские течения и ветер.

Самые высокие и сильные приливные волны возникают в мелких и узких заливах или устьях рек, впадающих в моря и океаны. Приливная волна Индийского океана катится против течения Ганга на расстояние 250 км от его устья. Приливная волна Атлантического океана распространяется на 900 км вверх по Амазонке. В закрытых морях, например Черном или Средиземном, возникают малые приливные волны высотой 50-70 см.

Мощность электростанций в некоторых местах могла бы составить 2-20 МВт. Первая морская приливная электростанция мощностью 635 кВт была построена в 1913 г. в бухте Ди около Ливерпуля. В 1935 г. приливную электростанцию начали строить в США. Американцы перегородили часть залива Пассамакводи на восточном побережье, истратили 7 млн. долл., но работы пришлось прекратить из-за неудобного для строительства, слишком глубокого и мягкого морского дна, а также из-за того, что построенная неподалеку крупная тепловая электростанция дала более дешевую энергию.

Аргентинские специалисты предлагали использовать очень высокую приливную волну в Магеллановом проливе, но правительство не утвердило дорогостоящий проект.

С 1967 г. в устье реки Ранс во Франции на приливах высотой до 13 метров работает ПЭС мощностью 240 тыс. кВт с годовой отдачей 540 тыс. кВт/ч. Советский инженер Бернштейн разработал удобный способ постройки блоков ПЭС, буксируемых на плаву в нужные места, и рассчитал рентабельную процедуру включения ПЭС в энергосети в часы их максимальной нагрузки потребителями. Его идеи проверены на ПЭС, построенной в 1968 году в Кислой Губе около Мурманска; своей очереди ждет ПЭС на 6 млн. кВт в Мезенском заливе на Баренцевом море.

В настоящее время в ряде стран, и в первую очередь в Англии, ведутся интенсивные работы по использованию энергии морских волн. Британские острова имеют очень длинную береговую линию, во многих местах море остается бурным в течение длительного времени. По оценкам ученых, за счет энергии морских волн в английских территориальных водах можно было бы получить мощность до 120 ГВт, что вдвое превышает мощность всех электростанций, принадлежащих Британскому Центральному электроэнергетическому управлению.

Энергия земли. Тепло от горячих горных пород в земной коре тоже может генерировать электричество. Через пробуренные в горной породе скважины вниз накачивается холодная вода, а в вверх поднимается образованный из воды пар, который вращает турбину. Такой вид энергии называется геотермальной энергией. Она используется, например, в Новой Зеландии и Исландии.

Энергия из отходов. Одним из наиболее необычных видов использования отходов человеческой деятельности является получение электроэнергии из мусора. Проблема городских свалок стала одной из наиболее актуальных проблем современных мегаполисов. Но, оказывается, их можно еще использовать для производства электроэнергии. Во всяком случае именно так поступили в США, в штате Пенсильвания. Когда построенная для сжигания мусора и одновременной выработки электроэнергии для 15000 домов печь стала получать недостаточно топлива, было решено восполнить его мусором с уже закрытых свалок. Вырабатываемая из мусора энергия приносит округу около $ 4000 прибыли еженедельно. Но главное - объем закрытых свалок сократился на 78%.

Энергия навоза. Много проблем связано с загрязнением водоемов отходами звероводческих хозяйств. Большие количества органического вещества, попадающие в водоемы, способствуют их загрязнению. Известно, что теплоцентрали - активные загрязнители окружающей среды, как и свинофермы и коровники. Именно второй способ получения энергии выбрали в английском городе Пиделхинтоне, где разработана технология переработки навоза свиней в электроэнергию. Отходы идут по трубопроводу на электростанцию, где в специальном реакторе подвергаются биологической переработке. Образующийся газ используется для получения электроэнергии, а переработанные бактериями отходы - для удобрения. Перерабатывая 70 тонн навоза ежедневно, можно получить 40 КВт/ч.

Подводя итог, нужно отметить, что на сегодняшний день роль альтернативных источников энергии растёт, что благоприятно сказывается на природных запасах, экологической ситуации в мире. В первую очередь этот рост происходит благодаря странам, где нет достаточных запасов полезных ископаемых, в первую очередь, нефти и газа. Таким образом, можно с уверенностью сказать, что роль альтернативных источников энергии будет повышаться. Эта тенденция будет наблюдаться в основном в странах, где невелики запасы собственных природных ресурсов.

Альтернативные источники энергии — это ветер, солнце, приливы и отливы, биомасса, геотермальная энергия Земли.

Ветряные мельницы давно используются человеком в качестве источника энергии. Однако они эффективны и пригодны только для мелкого пользователя. К сожалению, ветер пока еще не в состоянии давать электроэнергию в достаточных количествах. Солнечная и ветровая энергетика имеет серьезный недостаток — временную нестабильность именно в тот момент, когда она особенно нужна. В связи с этим необходимы системы хранения энергии, чтобы потребление ее могло быть возможно в любое время, но экономически зрелой технологии создания таких систем пока нет.

Первые ветряные электрогенераторы были разработаны еще в 90-х гг. XIX в. в Дании, а уже к 1910 г. в этой стране было построено несколько сот мелких установок. Еще через несколько лет датская промышленность получала от ветряных генераторов четверть необходимой ей электроэнергии. Их общая мощность составила 150-200 МВт.

В 1982 г. на китайском рынке было продано 1280 ветряных турбин, а в 1986 г. — 11 000, что позволило обеспечить электричеством те районы Китая, в которых раньше его никогда не было.

В начале XX в. в России насчитывалось 250 тыс. крестьянских ветряных мельниц мощностью до 1 млн кВт. Они перемалывали 2,5 млрд пудов зерна на месте, без дальних перевозок. К сожалению, в результате бездумного отношения к природным ресурсам в 40-х гг. прошлого века на территории бывшего СССР была разрушена основная часть ветряных и водяных двигателей, а к 50-м гг. они почти совсем исчезли как «отсталая техника».

В настоящее время солнечную энергию используют в некоторых странах в основном для отопления, а для производства энергии — в очень незначительных масштабах. Между тем мощность солнечного излучения, достигающего Земли, составляет 2 х 10 17 Вт, что более чем в 30 тыс. раз превышает сегодняшний уровень энергопотребления человечества.

Различают два основных варианта использования энергии Солнца: физический и биологический. При физическом варианте энергия аккумулируется солнечными коллекторами, солнечными элементами на полупроводниках или концентрируется системой зеркал. При биологическом варианте используется солнечная энергия, накопленная в процессе фотосинтеза в органическом веществе растений (обычно в древесине). Этот вариант годится для стран с относительно большими запасами леса. Например, Австрия планирует в ближайшие годы получать от сжигания древесины до трети необходимой ей электроэнергии. Для этих же целей в Великобритании планируется засадить лесом около 1 млн га земель, непригодных для сельскохозяйственного использования. Высаживаются быстрорастущие породы, такие как тополь, срезку которого производят уже через 3 года после посадки (высота этого дерева около 4 м, диаметр стволика — более 6 см).

Проблема использования нетрадиционных источников энергии в последнее время особенно актуальна. Это, несомненно, выгодно, хотя подобные технологии требуют значительных затрат. В феврале 1983 г. американская фирма «Арка Солар» начала эксплуатировать первую в мире солнечную электростанцию мощностью 1 МВт. Возведение таких электростанций — дорогое удовольствие. Сооружение солнечной электростанции, способной обеспечить электроэнергией около 10 тыс. бытовых потребителей (мощность — около 10 мМВт), обойдется в 190 млн дол. Это в четыре раза больше, нежели расходы на сооружение ТЭС, работающей на твердом топливе, и соответственно в три раза больше, чем строительство гидроэлектростанции и АЭС. Тем не менее специалисты по изучению солнечной энергии уверены, что с развитием технологии использования энергии Солнца цены на нее значительно снизятся.

Вероятно, будущее энергетики — за ветряной и солнечной энергией. В 1995 г. в Индии приступили к реализации программы по выработке энергии с помощью ветра. В США мощность ветряных электростанций составляет 1654 МВт, в Европейском союзе — 2534 МВт, из них 1000 МВт вырабатывается в Германии. В настоящее время наибольшего развития ветроэнергетика достигла в Германии, Англии, Голландии, Дании, США (только в Калифорнии 15 тыс. ветряков). Энергия, получаемая с помощью ветра, может постоянно возобновляться. Ветряные станции не загрязняют окружающую среду. С помощью ветряной энергии можно электрифицировать самые отдаленные уголки земного шара. К примеру, 1600 жителей острова Дезират в Гваделупе пользуются электричеством, которое вырабатывают 20 ветряных генераторов.

Из чего еще можно получать энергию, не загрязняя окружающую среду?

Для использования энергии приливов и отливов обычно строят приливные электростанции в устьях рек либо непосредственно на морском берегу. В обычном портовом волноломе оставляют отверстия, куда свободно поступает вода. Каждая волна повышает уровень воды, а следовательно, и давление остающегося в отверстиях воздуха. «Выдавливаемый» наружу через верхнее отверстие воздух приводит в движение турбину. С уходом волны возникает обратное движение воздуха, который стремится заполнить вакуум, и турбина получает новый импульс к вращению. Согласно оценкам специалистов, такие электростанции могут использовать до 45 % энергии приливов.

Волновая энергия представляется довольно многообещающей формой из новых энергоисточников. Например, на каждый метр волнового фронта, окружающего Британию со стороны Северной Атлантики, в среднем приходится 80 кВт энергии в год, или 120 000 ГВт. Существенные потери при переработке и передаче этой энергии неизбежны, и, по-видимому, лишь третья ее часть может поступать в сеть. Тем не менее оставшегося объема достаточно для того, чтобы обеспечить всю Британию электричеством на уровне существующей нормы потребления.

Привлекает ученых и использование биогаза, который представляет собой смесь горючего газа — метана (60-70 %) и негорючего углекислого газа. В нем обычно присутствуют примеси — сероводород, водород, кислород, азот. Образуется биогаз в результате анаэробного (бескислородного) разложения органики. Этот процесс в природе можно наблюдать на низинных болотах. Воздушные пузырьки, поднимающиеся со дна заболоченных участков, это и есть биогаз — метан и его производные.

Процесс получения биогаза можно разделить на два этапа. Вначале с помощью анаэробных бактерий из углеводов, белков и жиров образуется набор органических и неорганических веществ: кислоты (масляная, пропионовая, уксусная), водород, углекислота. На втором этапе (щелочном или метановом) подключаются метановые бактерии, которые разрушают органические кислоты с выделением метана, углекислого газа и небольшого количества водорода.

В зависимости от химического состава сырья при сбраживании выделяется от 5 до 15 кубометров газа на кубометр перерабатываемой органики.

Биогаз можно сжигать для отопления домов, сушки зерна, использовать в качестве горючего для автомобилей и тракторов. По своему составу биогаз мало отличается от природного газа. Кроме того, в процессе получения биогаза остаток брожения составляет примерно половину органических веществ. Его можно брикетировать и получать твердое топливо. Однако в хозяйственном отношении это не слишком рационально. Остаток брожения лучше использовать в качестве удобрения.

1 м 3 биогаза соответствует 1 л жидкого газа или 0,5 л высококачественного бензина. Получение биогаза даст технологическую выгоду — уничтожение отходов и энергетическую выгоду — дешевое горючее.

В Индии для получения биогаза используется около 1 млн дешевых и простых установок, а в Китае их свыше 7 млн. С точки зрения экологии биогаз имеет огромные преимущества, так как он может заменить дрова, а следовательно, сохранить лес и предотвратить опустынивание. В Европе ряд установок по очистке городских сточных вод удовлетворяет свои энергетические потребности за счет производимого ими биогаза.

Еще одним альтернативным источником энергии является сельскохозяйственное сырье: сахарный тростник, сахарная свекла, картофель, топинамбур и др. Из него методом ферментации в некоторых странах производят жидкое топливо, в частности этанол. Так, в Бразилии растительную массу преобразуют в этиловый спирт в таких количествах, что эта страна удовлетворяет большую часть своих потребностей в автомобильном топливе. Сырье, необходимое для организации массового производства этанола, — это в основном сахарный тростник. Сахарный тростник активно участвует в процессе фотосинтеза и производит на каждый гектар обрабатываемой площади больше энергии, чем другие культуры. В настоящее время его производство в Бразилии составляет 8,4 млн т, что соответствует 5,6 млн т бензина самого высокого качества. В США производится биохол — горючее для автомобилей, содержащее 10 % этанола, полученного из кукурузы.

Тепловую или электрическую энергию можно добывать за счет тепла земных глубин. Геотермальная энергетика экономически эффективна там, где горячие воды приближены к поверхности земной коры, — в районах активной вулканический деятельности с многочисленными гейзерами (Камчатка, Курильские острова, острова Японского архипелага). В отличие от других первичных источников энергии, носители геотермальной энергии невозможно транспортировать на расстояние, превышающее несколько километров. Поэтому земное тепло — типично локальный источник энергии, и работы, связанные с его эксплуатацией (разведка, подготовка буровых площадок, бурение, испытание скважин, забор жидкости, получение и передача энергии, подпитка, создание инфраструктур и т.д.), ведутся, как правило, на относительно небольшом участке с учетом местных условий.

Геотермальная энергия используется в широких масштабах в США, Мексике и на Филиппинах. Доля геотермальной энергии в энергетике Филиппин — 19 %, Мексики — 4 %, США (с учетом использования для отопления «напрямую», т.е. без переработки в электрическую энергию) — около 1 %. Суммарная мощность всех геоТЭС США превышает 2 млн кВт. Геотермальная энергия обеспечивает теплом столицу Исландии — Рейкьявик. Уже в 1943 г. там были пробурены 32 скважины на глубине от 440 до 2400 м, по которым к поверхности поднимается вода с температурой от 60 до 130 °С. Девять из этих скважин действуют по сей день. В России, на Камчатке, действует геоТЭС мощностью 11 МВт и строится еще одна мощностью 200 МВт.